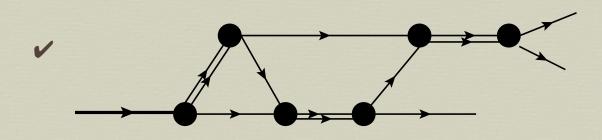
Dispersive analysis of $\omega \to 3\pi$



$$ightharpoonup ext{Disc } F(s) =
ho(s) \, t^*(s) (F(s) + \hat{F}(s))$$

$$\hat{F}(s) = 3 \int_{t^{-}(s)}^{t^{+}(s)} \frac{dt}{k(s)} (1 - z_s^2) F(t)$$

 \checkmark t(s) is the $\pi\pi$ scattering amplitude

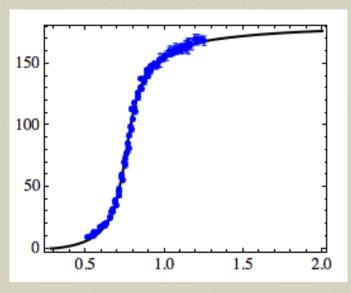
Bastian et.al. [Niecknig:2012sj]

✓ elastic unitarity

$$\checkmark F(s) = \Omega(s) g(s)$$

$$\checkmark \Omega(s) = \exp\left(\frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\delta(s')}{s'-s}\right)$$

 \checkmark assume $\delta(s \to \infty) \to \pi$



$$F(s) = \Omega(s) \left(\sum_{i=0}^{n-1} \alpha_i \, s^i + \frac{s^n}{\pi} \int_{4m_\pi^2}^{\Lambda^2} \frac{ds'}{s'^n} \frac{\sin(\delta(s')) \hat{F}(s')}{|\Omega(s')|(s'-s)} \right)$$

$$\Lambda = 1.9 \text{ GeV}$$

Our way

$$F(s) = \Omega_{el}(s) \left(G_{el}(s) + \sum_{i=1}^{n} a_i w^i \right)$$

$$\Omega_{el}(s) = \exp\left(\frac{s}{\pi} \int_{4m_{\pi}^2}^{4m_K^2} \frac{ds'}{s'} \frac{\delta(s')}{s'-s}\right)$$

 \checkmark no assumption about $\delta(s \to \infty)$

$$F(s) = \Omega_{el}(s) \left(\int_{4m_{\pi}^{2}}^{4m_{K}^{2}} \frac{ds'}{\pi} \frac{\sin(\delta(s'))\hat{F}(s')}{|\Omega_{el}(s')|(s'-s)} + \sum_{i=1}^{n} a_{i} \omega^{i}(s) \right)$$

 $\omega(s)$ is a conformal map of inelastic contributions

 \checkmark Correct asym. behavior $F(s \to \infty) \to 0$ imposed by a_i

It took us some time to find it...

$$F(s) = t(s)(G(s) + \sum a_i \omega^i)$$
$$F(s) = t(s)G(s) + \sum a_i \omega^i$$

need to neglect l.h. cuts in $\operatorname{Disc} G(s)$

$$F(s) = \int_{4m_{\pi}^2}^{4m_K^2} \frac{ds'}{\pi} \frac{\text{Disc F(s)}}{s'-s} + \sum a_i \omega^i - \text{problems with a cut-off}$$
 - an additional integral [homogeneous part]

$$F(s) = \Omega_{el}(s) G_{el}(s) + \sum a_i \omega^i$$