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Abstract :

We performed a complete partial wave analysis of the reaction γp → pπ+π− in the range
3.0 GeV < Eγ < 3.8GeV and momentum transfer 0.4 GeV2 < −t <1.0 GeV2 using the
g11 data set. As a check of the data quality and photon flux normalization, a standard

analysis, similar to the procedure used to analyze g6 data set, was performed deriving the
differential cross section dσ/dtfor the reaction γp → pρ0. The partial wave analysis was
performed in different ways in order to evaluate the systematic of the procedure and the
effect of the approximations. Again, to check the PWA results, the cross section for the
dominant channel γp → pρ0 was extracted and found to be in good agreement with the
results of the standard analysis. As a final result, moments of the di-pion angular distri-
butions and differential cross sections for S, P, and D wave were derived. In particular, in
the S-wave, we found a clear evidence of the f0(980) scalar meson. This is the first time
this resonance has been measured in a photoproduction experiment.



Introduction
Photo-production has only recently become a powerful tool in investigations of meson spec-

troscopy. Most of our knowledge on the light quark meson spectrum comes from hadron induced
reactions, using typically π, K, p or p̄ beams. In contrast there have been very few comprehensive
programs exploring photo-production. The typical data sets from existing photo-production ex-
periments in the energy range below 20 GeV (typical for meson spectroscopy experiments) have
tens of thousands of events and only a few topologies have been studied [1, 2, 3] . In contrast
the data samples from the g11 run, in many channels exceed the existing sets by at least an
order of magnitude and with several reconstructed topologies enable a comprehensive study.
This study will focus on:

• photo-production mechanisms of some well established resonances, ρ, f2(1270) and extrac-
tion of photo-couplings of resonances,

• measurements of cross-sections of less known states like the f0(980),

• study of non-resonant, coherent production of meson pairs with emphasis on threshold
production.

• understanding of partial wave analysis in presence of both baryon and meson resonances.

This analysis is part of a wider program that includes other two-meson topologies as KK̄ and
π0π in the final state.
The theoreical analysis will follow closely that of [5, 6].
At center of mass energies

√
s < few GeV, which are still large compared to other invariants, in

particular to the momentum transfered to the target, according to Regge theory, the hadronic
production amplitudes factorize into amplitude for meson production off a reggion and an am-
plitude for the reggion coupled to the nucleon [4]. In quasi-elastic production Regge theory
can be used to provide the mechanism of both resonance production and for the production of
coherent backgrounds. Resonance parameters will then be extracted and compared with lattice
computations or used to test models of QCD.

Photo-production opens a new window in this respect. On one side it is complementary to
hadro-production. Through VMD photon can be decomposed into a sum over vector mesons.
This seems to saturate rapidly thus can be described in terms of regge amplitudes for vector
meson nucleon scattering. On the other side quark-hadron duality and the point-like-nature of
the photon coupling makes it possible to describe photo-hadron interactions at the QCD level.
For example, radiative decays of resonances, which directly probe the QCD structure of hadrons
may be accessible through photo-production, provided the resonance production mechanisms can
be isolated from coherent backgrounds. Extraction of resonance parameters from the data thus
requires amplitude analysis and understanding of background processes. Even though CLAS is
not ideal for these type of analysis due to a limited acceptance in the forward direction and the
available energy sets a rather low upper limit of photon energy, high statistics, availability of
several channels and spread in photon energy, may enable to verify the applicability of regge
parametrizations, and thus provide a viable model for the background and direct resonance
production.

Photo-production can also access a different part of meson spectrum as compared with
reactions initiated by hadron beams. This is related to the helicity structure of the photon-quark
interactions and the point-like nature of the photon and can be studied via partial wave analysis.
It is also qute possible that resonances suppressed in photo-production could be easier accessed
in photo-production. For example photo-production of KK̄ pairs near threshold is dominated
by the φ meson. Interference of the φ decay products and with the coherently produced scalar
waves can be used to investigate scalar resonances and in particular the enigmatic, f0(980) [5].



iii

The properties of the f0(980) depend crucially on the low-energy meson-meson interactions that
test effective chiral theories [7] .

In this note we report about π+π− production, focusing on the production of low spin partial
waves to investigate production mechanisms of the σ, ρ, f0(980) and f2(1270). This is the first
step of a coupled channel analysis which involves all relevant decay channels.
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Chapter 1

Data analysis

In this section we will briefly show the main features of the data, the systematic controls of their
quality and reliability and the cuts used to identify the particles and the channel.

To identify the channel γp → pπ+π− two different final state topologies were analyzed: 1)
pπ+ detected and π− not detected; 2) pπ+π− detected. Due to the different correlation between
the produced particles and the different CLAS efficiencies, each topology mainly covers different
kinematical regions.

The final state was selected identifying two (three) charged particles and reconstructing the
π− (no other particles) by missing mass technique. The peaks of identified particles and known
background states were selected (or cut) fitting the peaks and applying a 3σ cut. This analysis
was performed using the whole g11 data set covering the energy range from 3.0 GeV up to 3.8
GeV corresponding to a total integrated luminosity of ∼ 18 pb−1. If not explicitely said, figures
refer to the whole statistics.

1.1 General cuts

For both topologies the main steps of the analysis are the following: particle identification(p,
π+, π−); channel identification with missing mass technique.
Data were corrected for energy loss (standard Eloss package with updated g11 geometry), tagger
and CLAS momentum distortions (derived from the kinematic fitting procedure of g11 data as
described in [39]). The experimental masses for known hadrons after correction, are reported in
Appendix A compared to the PDG values: a maximum discrepancy of 1.5 MeV was observed.

1.2 Particle and channel identification of γp → pπ+(π−)

For this topology, we selected events with 2 charged particles in the final state. The standard
SEB particle ID was used to identify p and π+. Left panel of Fig. 1.1 shows (β vs. momentum)
for protons and pions. All particles identified by SEB were retained in the analysis. We identified
the π− looking at the missing mass of the (pπ+) system. The right panel in Fig. 1.1 shows the
π− peak on a small background we did not subtract. A simple cut of ±0.06 GeV2 around the
reconstructed squared mass of 0.019 GeV2 was applied to identify the missing pion.

1.3 Particle and channel identification of γp → pπ+π−

For this topology, we selected events with 3 charged particles in the final state. The standard
SEB particle ID was used to identify p and π+ and π−. The left panel in Fig. 1.2 shows (β vs.
momentum) for proton and pions. The right panel in Fig. 1.2 shows the missing mass of the

1
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Figure 1.1: pπ+(π−) topology. The left panel shows the proton and pion lines in the β versus p
plane. The right panel shows the missing π− mass (the hatched area corresponds to the reteined
events). Only 4% of the whale statistics is shown.
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Figure 1.2: pπ+π− topology. The left panel shows the proton and pion lines in the β versus p
plane. The right panel shows the missing mass of the system (pπ+π−) (hatched area correspond
to the reteined events). Only 4% of the whale statistics is shown.
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Figure 1.3: pπ+π− topology. The left panel shows the reconstructed π− mass (hatched area
correspond to the reteined events) derived from the measured (pπ+) system. The right panel
shows the same for the π+. Only 4% of the whale statistics is shown.

system (pπ+π−) when all the three particles are detected. A cut of ±0.0015 GeV2 around the
squared missing mass was applied to identify the 2π final state. A loose cut (±0.09 GeV2 around
the reconstructed squared mass of 0.019 GeV2) was also applied to the reconstructed π− (π+)
mass derived from the measured pπ+ (pπ−) system. Figure 1.3 shows the two MM(pπ) spectra
before and after the cut. Since all three particles were detected, the multi-pion background is
almost absent.

1.4 Fiducial cuts

In this analysis we applied fiducial cuts on minimum hadron momenta and minimum and max-
imum hadron angles. DC holes and bad TOF paddles were removed at cooking level and in
GPP. Fiducial cuts were derived from the comparison of the Single Particle Acceptance (SPE’s)
derived from the real data and from the Monte Carlo Simulations. More details on SPEs are
reported in Par. 2.1.3.
Here is the detailed list of cuts applied (all variables are in the Lab system).

Proton:

• p > 0.32 GeV: cut on minimum proton momentum;

• θ > 10◦: cut on minimum proton angle;

• NOT (p < 0.45 GeV AND θ < 35◦): this cut removes a specific kinematic region where
the discrepancy between SPE from data and MC was more than 10%.

π+:

• p > 0.125 GeV: cut on minimum proton momentum;

• θ > 10◦ AND θ < 120◦: cut on minimum and maximum π+ angles;
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Figure 1.4: Photon energy spectrum after the selection. Left, pπ+(π−) topology; right, pπ+π−

topology.

• SEC1: θ < 90◦, SEC3: θ < 70◦, SEC5: θ < 80◦: specific sector dependent cuts.

π−:

• p > 0.125 GeV: cut on minimum proton momentum;

• θ > 10◦ AND θ < 120◦: cut on minimum and maximum π− angles;

• SEC1: θ < 100◦, SEC3: θ < 90◦, SEC5: θ < 90◦, SEC6: θ < 110◦: specific sector
dependent cuts.

After applying all cuts yields reduce from 46M to 41M events and from 8.5M to 7.5M events
for the first and second topoly respectively. Fiducial cuts were applyied to data and MC sim-
ulations. In this way the corresponding efficiency takes into account the different conditions
compensating for possible holes or bad detector regions. The same set of cuts was used to ex-
tract different known cross sections involving different particles and their combination. More
details are reported in dedicated notes [40, 41].

1.5 Photon flux normalization and multiple hits correction

For this analysis only the highest part of the photon energy spectrum was used ranging from 3.0
GeV to 3.8 GeV. Figure 1.4 shows the photon energy spectrum after all cuts described above
were applied.
To be able to extract an absolute cross section, some cuts were applied from the very beginning.

These mainly deal with the proper identification of the incident photon and with the photon
flux normalization. We required one and only one photon present in the tagger within a certain
time window between CLAS and the tagger itself. The window was chosen to be ± 2 ns after
checking the consistency of the cross sections extracted from the g11 data sample with the world
data [40]. We also excluded from the analysis all the events associated to beam trips 1. These

1The photon normalization code, GFLUX, evaluates the number of incoming photons only for the time intervals,
defined by subsequent scaler events, when the beam intensity and DAQ rate were stable. All events that do not
belong to such ”good” time intervals are marked as bad and should not be used in the analysis if the final goal is
the extraction of an absolute cross section. The beam trip information is stored in dedicated text files available
on the silo in /mss/clas/g11a/production/pass1/v1/trip.
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Figure 1.5: Bidimensional plot of (π+π−) invariant mass versus (pπ+) invariant mass. Left,
pπ+(π−) topology; right, pπ+π− topology.

cuts reduce the data sample by ∼10-15%.

1.6 Other corrections

Detailed studies performed by the g11 run group and independently by the CMU group derived
some corrections that have to be applied to the raw yilds in order to obtain the cross sections.
More details are reported in dedicated Notes [47, 48]; below we summarize the correction factors
used in this analysis.

• Time window correction: 1.06;

• Multiple hit cut correction: ∼1.15 (calculated and applied for each E-counter);

• Current dependent correction cut: 1.187;

• Trigger inneficiency (topology 1 only): 1.15

All values reported above multiply the raw yields.

1.7 Cuts summary

The applied cuts are summarized below.

General:

• |TAGtime − STtime| < 2 ns: usual timing cut;

• |Nphoton in time| = 1, to reject multiple hits;

• TRIG CLAS =0, to cut events taken during beam trips;

• the proton, as identified by SEB, is always required.
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• 3.0 GeV < Eγ < 3.8 GeV;

Particle and channel id: pπ+(π−) topology 1

• Nπ+=1, Nπ−=0; only one positive pion detected;

• |MissingMass2
(pπ+) − 0.019| <0.06 GeV2: π− missing mass.

Particle and channel id: pπ+π− topology 2

• Nπ+=1, Nπ−=1; exactly one positive and one negative pion detected;

• |MissingMass2
(pπ+) − 0.019| <0.09 GeV2: consistent π− missing mass;

• |MissingMass2
(pπ−) − 0.019| <0.09 GeV2: consistent π+ missing mass;

• |MissingMass2
(pπ+π−)| <0.0015 GeV2: no other particle in the final state.

After all cuts the two data samples have a total of ∼41M and ∼7.5M events respectively.
Figure 1.5 shows the bidimension plot of (π+π−) (pπ+) invariant masses for the two topologies.
The unidimensional projections, (π+π−), (pπ+) and (pπ−), are shown in fig. 1.6. The (π+π−)
angular distribution in the center of mass system, as well as the −t distribution for the two
topologies is shown in fig. 1.7. While the first shows an acceptance cut around −t ∼ 0.1 GeV2,
the second is clearly deforemed by the CLAS acceptance up to −t ∼ 0.5 − 0.6 GeV2. Since
for this study we are interested in the low −t kinematic domain, only the first topology will be
further analyzed.
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Figure 1.6: Invariant masses obtained from the two topologies: left pπ+(π−); right pπ+π−.
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Figure 1.7: Upper panel: cos θCM
π+π− distribution in the center of mass system. Lower panel: −t

distribution zooming in the −t < 1 GeV2 region (insert). Left, pπ+(π−) topology; right, pπ+π−

topology.



Chapter 2

The γp → pπ+π− and the γp → pρ0

cross section: standard analysis

In this Chapter we described procedure to derive the γp → pπ+π− total cross section and the
γp → pρ0 differential cross section. This analysis is similar to what performed on CLAS g6a
data set CLAS pubblished in ref. ?? and ref. ??. The main difference is that here we only derive
an integrated CLAS efficiency (no binning in the 5-dimension phase space) using a realistic event
generator for the reaction γp → pπ+π−. Therefore the derived cross sections may still have a
weak model-dependence. Since the main goal of this analysis is to perform the partial wave
analysis on the π+π− system (see next Chapter), the cross section deirved here are intended as
a check of the data quality and systematics.

2.1 Monte Carlo simulations

2.1.1 The event generator

To evaluate the CLAS efficiency we used a realistic event generator [Co94]. Since the missing
mass cuts (for each detected topology) keeps the contamination of more-than-two-pions produc-
tion at some % level simulations only include reactions with the pπ+π− final state. The channels
included in the simulation were: γp → pρ, γp → ∆++π−, γp → ∆0π+, γp → pf2(1225) and
γp → pπ+π− (phase space). Each channel was weighted by the relative total cross sections in the
energy range of the experiment (62%, 10%, 4% 20% and 4% respectively) The code interpolates
the available measured angular distributions (production and deacy) for ρ, ∆’s and f2(1225)
while the phase space was assumed to have a 3-body uniform distribution in the hadronic center
of mass system. Fig. 2.1 shows the generated distributions of: Eγ , −(t− tmin) and cos θCM

π+π− in
the energy range 3 − 3.8 GeV. Fig. 2.2 shows the reconstructed (π+π−) invariant mass spectra
as obteined from the pπ+(π−) and pπ+π− topologies. The event vertex was extracted uniformly
over a realistic long target, z in the range (-30:+10) cm, with x and y in a 0.5 cm radius
corresponding to the photon beam spot. The generated events were processed by the code sim-
ulating CLAS (GSIM), post processed using GPP and reconstructed using the same version of
reconstruction code (RECSIS) used to reconstruct the real data. In this way the geometrical
acceptance of CLAS as well as the hardware/software efficiency should be taken into account.
The same set of cuts was applied to the simulated data (missing mass, minimum momentum
cut, fiducial cuts) in order to have a realistic estimation of the overall efficiency of the whole
analysis procedure.

9
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Figure 2.1: MC generated events: Eγ (top), −(t − tmin) (middle), and cos θCM
π+π− (bottom)

distributions.
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Figure 2.3: CLAS efficiency as a function of −t. Top: generated (black), reconstructed pπ+(π−)
(red) and reconstructed pπ+π− (blue) events.The corresponding efficiency for pπ+(π−) (middle)
and pπ+π− (bottom) topologies.

2.1.2 The CLAS efficiency using GSIM

The efficincy was defined in the standard way:

CLAS Efficiency = ε =
NReconstructed

NGenerated
(2.1)

To minimise the model dependency, all data (both generated and reconstructed) were binned in
3 independent kinematical variables: Eγ , (π+π−) invariant mass, and −t (or cos θCM

π+π−). The
number of bin for each variable was chosen to be compatible with CLAS resolution and sensitive
to the efficiency variations. Tab. 2.1.2 shows the binning and the range of each variable. A total
of 38M events were generated.

Fig. 2.3 shows the −t generated and reconstructed distributions and the corresponding ef-
ficiency for the two topologies in the first energy bin (3.0 - 3.2 GeV). The same as a function
of cos θCM

π+π− , is shown in fig. 2.4. Since the topology with all trhee hadrons detected shows a
detection efficincy one order of magnitude smaller in the forward region (0< −t < 1 GeV2) where
the most part of the total cross section is concentred and where the interest of this analysis is
focused, what follows is only derived from the first topology (pπ+ detected).
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Figure 2.4: CLAS efficiency as a function of cos θCM
π+π− . Top: generated (black), reconstructed

pπ+(π−) (red) and reconstructed pπ+π− (blue) events.The corresponding efficiency for pπ+(π−)
(middle) and pπ+π− (bottom) topologies.

2.1.3 Single particle efficiency

To check the reliability of the CLAS simulation (GSIM), a second procedure to extract the
detection efficiency was defined. This is a self-consistent method using the measured data to
extract the efficiency. The main idea is that having a 3 hadrons final state (pπ+π−) it is possible
to use the different topologies (all particle detected and 1 particle missing) to define a single
particle efficiencies inside the fiducial cuts. Assuming each particle to be independent, the
number of event seen in one defined topology is in fact:

N(pπ+detected, π−notdetected) = N0εpεπ+(1 − επ−) (2.2)

where the εpart is the single particle efficiency and (1-εpart) is the inefficiency to detect the
particle. The εpart related to the number of events with detected and missing particles as:

επ+ =
Npπ+π−detected

Npπ−detected,π+missing
επ− =

Npπ+π−detected

Npπ+detected,π−missing
εp =

Npπ+π−detected

Nπ+π−detected,pmissing
(2.3)

The single particle efficiency were derived, as a function of momentum and theta in the LAB
system in each CLAS sector, εpart(θLab, pLab, sector). We did not use the SPE as main efficiency
evaluation for some reasons:

• formula 2.2 does not take into account correlations between particles: the probability to
detect one particle is not affected by the detection of another particle;

• the kinematical domain of each topology can be concentrated in an area where the single
particle efficiency (for some of the particles), is not well determined; in fact, while to
get the proton efficiency one has to use the topologies containing (pπ+π− detected) and
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Figure 2.5: Proton SPE (within fiducial cuts) obtained from data (left) and simulations (right).
The efficiency is shown as a function of particle momentum vs lab angle for each sector.
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Figure 2.6: Positive π SPE (within fiducial cuts) obtained from data (left) and simulations
(right). The efficiency is shown as a function of particle momentum vs lab angle for each sector.

(π+π−detected,pmissing) that involve some specific kinematic for the involved protons, the
resulting SPE would be used to correct all the other topologies that, can have the proton
in different kinematical domains;

• it is not clear how to take into account a possible bias introduced by the trigger.

Nevertheless, the SPEs can be defined both for the real data and for the simulations (passed
trough the whole analysis chain) and then used for comparison. Because we are using a realistic
event generator and a realistic description of CLAS (GSIM), the data and the simulation should
give the same SPEs. Figures 2.5, 2.6, and 2.7 show the SPEs for proton, π+ and π− obtained
from data and pseudo-data (simulations). Fig. 2.8 shows the SPEs data/sim ratio for the three
hadrons.

From the comparison it results that the two SPEs well agree at 5-10% level within fiducial
cuts demonstrationg that GSIM reproduce the CLAS features in detail.
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Figure 2.7: Negative π SPE (within fiducial cuts) obtained from data (left) and simulations
(right). The efficiency is shown as a function of particle momentum vs lab angle for each sector.
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Figure 2.8: Ratio of SPE obtained from data and simulations for proton (left), π+, and π−.
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Figure 2.9: Differential cross section dσ/dt for the reaction γp → pπ+π− in the 4 energy bins.
Errors are statistical only.

2.2 The γp → pπ+π− cross section

The first result of our analysis is the differential cross section dσ/dt (or dσ/d cos θCM
π+π−) for the

reaction γp → pπ+π−. Fig. 2.9 and fig. 2.10 show the differential cross sections in the 4 energy
bins derived from the pπ+ topology. Total cross sections, resulting from the integration over
−t and over cosθCM

π+π− of the corresponding differential cross section are shown in fig. 2.11. The
very forward region corresponding to −t ∼ 0 or cos θCM

π+π− ∼ 1 is strongly affected by the CLAS
acceptance reduced to small values or even to zero in the very first bins. The extrapolation of
the −t and angular distributions in the unmeasured kinematic domain explains the difference
between the two sets of points giving an estimate of the related systematic error. The good
agreement with the existing data [33] confirms the quality of our data set and the validity of our
procedure.
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Figure 2.10: Differential cross section dσ/dcosθCM
π+π− for the reaction γp → pπ+π− in the 4

energy bins. Errors are statistical only.
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2.3 The γp → pρ0 cross section

To disentangle the different channels contributing to the pπ+π− we used the same same approach
used in the ABBHHM data analysis [33] and more recently used to analyse the ZEUS data [34].
The (π+π−) invariant mass distribution was fitted using the following formula:

dσ

dt dM(π+π−)
= A2|(Breit−Wigner)ρ+B/A+C(Breit−Wigner)f2|

2+Pol(3thorder : D,E,F,G)

(2.4)

where (Breit − Wigner)X is the Breit-Wigner amplitude for the X-mass resonance with
momentum dependent width ΓX(Mπ+π−) given in ref. [35] and A,B,C,D,E, F and G the free
parameters in the fit. In this way the interference between the Breit-Wigner and the non resonant
(ππ) production is taken into account. Figures 2.12, 2.13, and 2.14 show results of the fit for
some selected and −t and photon beam energy bins.

According to the analysis of g6a data set, the Breit-Wigner fit is close to what obtained
using a realistic model that describes the 2-pions production as superposition of quasi-two-body
channels and the following decay of the intermediate state [36] 1. From that analysis, the model
dependence was estimated to be within 10-20%. The resulting dσ/dt for γp → pρ is reported in
fig. 2.15 in the 4 photon energy bins.

1The reactions included in the model and the main mechanisms are: 1) γp → pρ: described by the Pomeron
exchange, the f2(1270) Regge trajectory exchange, the s-channel exchange (all known resonances), a phenomeno-
logical u-channel exchange; 2) γp → ∆++(1232)π−: described by reggeized Born terms (contact, π-in-flight, ...)
and s-channel exchange (all known resonances); 3) γp → pf2(1270): described by a phenomenological contact
term and an s-channel form factor; 4) γp → heavy−∆++π−: phenomenological Breit-Wigner shape coming from
the superposition of many ∆− states; 5) γp → pπ+π−: a phase space as a complex number, function of C(W, t).
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Figure 2.12: CLAS efficiency as a function of Mπ+π− (top-left), Mπ+π− raw distribution (top-
right). Bottom: fit of dσ/dtdMπ+π− (black line) with separated contributions (rho in blue, phase
space in green, f2(1270) in red and interference term in yellow.
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Figure 2.13: CLAS efficiency as a function of Mπ+π− (top-left), Mπ+π− raw distribution (top-
right). Bottom: fit of dσ/dtdMπ+π− (black line) with separated contributions (rho in blue, phase
space in green, f2(1270) in red and interference term in yellow.
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Figure 2.14: CLAS efficiency as a function of Mπ+π− (top-left), Mπ+π− raw distribution (top-
right). Bottom: fit of dσ/dtdMπ+π− (black line) with separated contributions (rho in blue, phase
space in green, f2(1270) in red and interference term in yellow.
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Figure 2.15: Differential cross section dσ/dt for γp → pρ in the 4 photon beam energy bins.
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Figure 2.16: Differential cross section dσ/dt from g11 compared to existing data. Errors are
statistical only.

2.3.1 Comparison with previous experiments

Results from this analysis have been compared in fig. 2.16 to the previous measurement done
by CLAS g6a data set [?] and ABBHHM Collaboration [33]. The similar photon energy range,
the similar experimental procedure (identify the rho production through the measurement of
the full final state) and the similar analysis procedure (especially the invariant masses fits) make
the comparison between the three experiments particularly meaningful. Nevertheless, we have
to remind some advantages of our experiment respect to the even in this dynamical domain
(low -t): - tagged photons in place of bremmstralhung spectra subtraction; - better statistical
and systematic error; The only disadvantage of CLAS is the poor rho-forward-produced coverage
that do not allow to measure at −t < 0.1 GeV2/c2. As a check, we tried to derive the differential
cross section from the topology pπ+π−detected but, as guessed in Par. ??, the value obtained
is sistematically lower than what derived using the first topology. Data points start to agree
with the other set for −t > 1 GeV2/c2, where the corresponding efficiency start to be flat and
comparable to the first topology.



Chapter 3

Partial wave analysis of γp → pπ+π−

In this section we consider analysis of moments of di-pion angular distribution defined in equa-
tion 3.1 1.

〈Yλµ〉(Eγ , t,M) =
1√
4π

∫

dΩπ
dσ

dtdMdΩπ
Yλµ(Ωπ) (3.1)

These moments are expressed as bilinear in terms of partial waves which are analyzed in Chap-
ter 4. Extraction of moments requires that the measured angular distribution is corrected by
acceptance. We study three methods for implementing acceptance corrections. The first one is
to bin the data and MC in all kinematical variables and divide data by acceptance. The advan-
tage of this method is that it enables theoretical analysis of the data without having to deal with
the large MC files. It is, however, expected not to be reliable in bins where acceptance is small
or vanishing. In the other two methods moments are expanded in a model-independent way in
a set of basis functions and after weighting with MC, are compared to the data by maximizing
the likelihood function. The first of these two parametrizes the theory in terms of amplitudes
while the second uses directly moments as defined above. The approximations in these meth-
ods have to do with the choice of the basis and depend on the number of basis functions used.
We study the systematic effects of such truncations. Here we exclusively focus on the pπ+(π−)
topology binning data in 4 photon energy bins, 9 bins in momentum transfer −t and 100 bins
in the di-pion invariant mass. The binning definition is given in Table 2.1.2. In comparing the
three fitting methods we use data without fiducial cuts and photon flux normalization. Once
the optimal fitting strategy is established all subsequent fits are done after the cuts are being
applied and data are properly normalized. For the definition of the angles in the di-pion system
we follow the convention of Ballam et al. [1]. In the helicity system the π+π− are at rest, the
z-axis is chosen anti-parallel to the direction of the recoiling nucleon and the y-axis is parallel
to q × p where q is the photon momentum in the lab and p is the di-pion momentum in the
lab frame. The y-axis is invariant under the Lorentz boost relating the lab and the di-pion rest
frames. The x-axis is obtained from x = y × z. The decay angles Ωπ = (θπ, φπ) are the polar
and azimuthal angles of the π+ flight direction in the helicity frame.

Unlike in the analysis described earlier in the document the MC simulations needed for
extraction of moments are generated from a flat distribution in the pπ+π− phase space at
given photon energy. The details of MC generation is described below. This is followed by the
discussion of the three analysis methods.

1We show in Chapter 4 that moments are real thus we need only to consider ReYλµ.

21
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Bin number Photon energy range (Emin − Emax) in GeV
1 3.0 - 3.2
2 3.2 - 3.4
3 3.4 - 3.6
4 3.6 - 3.8

Bin number Negative of momentum transfer range (|t|min − |t|max) in GeV2

1 0.1 - 0.2
2 0.2 - 0.3
3 0.3 - 0.4
4 0.3 - 0.5
5 0.5 - 0.6
6 0.6 - 0.7
7 0.7 - 0.8
8 0.8 - 0.9
9 0.9 - 1.0

Bin number Di-pion mass range (Mmin − Mmax) in GeV
1 0.400 - 0.410
2 0.410 - 0.420
3 0.420 - 0.430
: :

98 1.370 - 1.380
99 1.380 - 1.390
100 1.390 - 1.400

Table 3.1: Bin definitions.

3.1 Monte Carlo simulations

3.1.1 Generated events

Raw MC was generated according to three-particle phase space with a photon beam
Bremsstrahlung energy spectrum defined as:

dN

dEdtdMdΩπdφcm
∝

ρ(E)√
spL

√

M2

4
− m2

π ∝
ρ(E)

E

√

M2

4
− m2

π. (3.2)

Here s = m2
p + 2Emp is the square of the center of mass energy and pL = (s − m2

p)/(2
√

s)
is the γp relative momentum in the center of mass frame. φcm is the azimuthal angle of the
di-pion system in the center of mass frame with the z axis along the photon beam and the y
axis perpendicular to the production plane. Ωπ is the π+ decay solid angle as discussed above.
Finally ρ(E) ∼ 1/E describes the photon spectrum. A sample of 1M raw events generated
in the energy range (3.0 < Eγ < 3.8) GeV and covering the allowed kinematic range in t and
Mππ yields ∼164k events in the Mππ and −t ranges of interest (0.4 GeV < Mππ < 1.4 GeV ,
0.1 GeV2 < −t < 1.0 GeV2). The distributions restricted to these M and t bins are shown in
Figs. 3.1.

The distribution of di-pion mass is shown in Fig. 3.2 for 4 energy bins and two bins in
momentum transfer.

3.1.2 Reconstructed events

As an example, from 1M Monte Carlo generated events in the (3.0 < E < 3.8) GeV energy range
approximately 164k events are reconstructed. Restriction to (0.1 < −t < 1.0) GeV2 and (0.4
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Figure 3.1: Generated distribution from 1M events in the t and M ranges considered in the
analysis (0.4 < M [ GeV] < 1.4, 0.1 < −t[ GeV2] < 1.0). a) Photon energy distribution, b)
Momentum transfer distribution, c) distribution of the center of mass scattering angle (events
are generated flat in cos θCM

π+π− and restricted to 0.1 < −t GeV2 < 1.0) in the analysis.
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Figure 3.2: Raw distribution of di-pion mass generated from 1M events compared with theoretical
curve representing the distribution given by Eq. 3.2.
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< Mππ < 1.4) GeV reduces the yield to 41k events. The distributions of this event sample are
shown in Fig. 3.3 as function of photon energy, momentum transfer −t, cos θCM

π+π− , and di-pion
decay angles, respectively.

In this analysis a total of 4.03G events were generated corresponding to 660M reconstructed
events

3.2 Extraction of moments of the di-pion angular distribution

In this section we describe the three procedures used to extract moments, we compare the results
and we combine some of them to provide the final experimental moments.
As already mentioned, in the first method, acceptance corrections are applied to the data while
in the other two corrections are applied to the theoretical parametrization of the data.

3.2.1 Un-normalized moments

For a given Eγ , t and di-pion mass M moments are defined by eq. 3.1, so that 〈Y00〉 corresponds
to the normalized di-pion production double differential cross section dσ/dtdM . In the following
we refer to the (Ei, tj,Mk, cos θπ,l, φπ,m) bin as (i, j, k, l,m). We also define the un-normalized
moments (not corrected for luminosity and bin size) as follow:

〈Ỹλµ〉data =
√

4π
∆Ndata(i,j,k)

∑

l,m

ReYλµ(Ωπ) (3.3)

where ∆Ndata(i, j, k) is the number of data events in the (i, j, k) energy, momentum transfer
−t, di-pion mass bin, ∆Ndata(i, j, k) =

∑

l,m ∆Ndata(i, j, k, l,m) Thus the moments 〈Ỹλµ〉data are
normalized to the yield in the given (Eγ , t,M) bin so that

〈Ỹ00〉data

0.1 GeV210 MeV
=

∆Ndata(E, t,M)

∆t∆M
(3.4)

Finally we define 〈Ỹλµ〉 moments by

〈Ỹλµ〉 =
√

4π

∆Nth(i,j,k)
∑

l,m

ReYλµ(Ωπ) (3.5)

where ∆Nth(i, j, k) is the predicted i.e. corrected for acceptance, number of events in the
particular energy (i), momentum transfer (j) and di-pion mass (k) bin. The ratio of the 〈Yλµ〉
defined in Eq. 3.1 and 〈Ỹλµ〉 involves the photon flux.

3.2.2 Absolute normalization

Moments defined above are not corrected for luminosity and bin size incorporating only the
correction for the CLAS acceptance. In particular, the 〈Ỹ00〉 moment is normalized to the fitted
number of events i.e. number of data events corrected by acceptance.

The normalized cross section is therefore given by

∆σ

∆t∆M
(i, j, k) =

∆Nth

∆t∆M
(i, j, k)I−1(Ei) =

〈Ỹ00〉(i, j, k)

0.1GeV2 × 10MeV
(i, j, k)I−1(Ei) (3.6)

where I(Ei) is the luminosity in units 1/µb tabulated in Table 3.2 .
The single-differential cross section is given by

∆σ

∆t
(i, j) =

Mmax
∑

k=Mmin

〈Ỹ00〉(i, j, k)

0.1 GeV2 I−1(Ei) (3.7)
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Figure 3.3: Reconstructed events from a sample of 1M generated with −t and M in the range
considered in the analysis (0.4 < M [ GeV] < 1.4, 0.1 < −t[ GeV2] < 1.0). a) Photon energy, b)
momentum transfer −t, c) cos θCM

π+π− , d) polar angle of the π+ in the helicity frame, e) azimuthal
angle of the π+.
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Bin number Photon energy range (Emin − Emax) in GeV I(Ei)[µb]−1

1 3.0 - 3.2 2.97031 × 106

2 3.2 - 3.4 2.77892 × 106

3 3.4 - 3.6 2.78193 × 106

4 3.6 - 3.8 2.64611 × 106

Table 3.2: Luminosity as a function of photon energy. As reported in Par. 1.5, the photon flux
error is dominated by the systematic uncertainties related to the corrections on the raw photon
yields estimated to be in the range of 10 %.

Sytematic error on photon flux evaluation is estimated to be of the order of 10% (see par. 1.5).
This value was added in quadrature to the statistical error of each moment.

3.2.3 First method: moments of efficiency corrected data

The acceptance correction is performed as follows. While the binning in Eγ , −t and M was
chosen as reported in Tab. 3.1, three different combinations of cos(θπ) and φπ binning were
tested: A) (nθ, nφ) = (25, 25), B) (nθ, nφ) = (10, 25), and C)(nθ, nφ) = (10, 10). For each choice,
the CLAS acceptance is defined as:

η(i, j, k, l,m) =
∆Nrec.(i, j, k, l,m)

∆Ngen.(i, j, k, l,m)
(3.8)

where ∆Ngen.(i, j, k, l,m) and ∆Nrec.(i, j, k, l,m) are the number of generated and reconstructed
events in the given bin. The expected (acceptance corrected) number of events is then given by:

∆Nth(i, j, k, l,m) =
∆Ndata(i, j, k, l,m)

η(i, j, k, l,m)
(3.9)

with the error estimated by:

δ∆Nth(i, j, k, l,m) = ∆Nth(i, j, k, l,m)

√

[

δ[∆Ndata(i, j, k, l,m)]

∆Ndata(i, j, k, l,m)

]2

+
[

δ[∆Nrec.(i, j, k, l,m)]

∆Nrec.(i, j, k, l,m)

]2

(3.10)
and

δ[(∆Ndata(i, j, k, l,m)] =
√

∆Ndata(i, j, k, l,m) (3.11)

δ[∆Nrec.(i, j, k, l,m)] =
√

∆Nrec.(i, j, k, l,m) (3.12)

In Fig. 3.4 we plot acceptance in a single E, −t and M bin for a few bins in φπ as a function
of cos(θπ). The plots clearly show holes in acceptance. An example of the expected number of
events is shown in Fig. 3.5. Points are missing where acceptance vanishes preventing computation
of ∆Nth in the full range of the angular variables. Finally in Fig. 3.6 we show acceptance
integrated over the helicity angles and the di-pion mass i.e,

η(i, j) =

∑

k,l,m Nrec.(i, j, k, l,m)
∑

k,l,m Ngen.(i, j, k, l,m)
(3.13)

On average acceptance is about 25%.
The expected number of events ∆Ndata(i, j, k, l,m) is related to moments defined above as:

∆Nth(E, t,M, θπ, φπ) =
√

4π
∑

λ

λ
∑

µ=0

〈Ỹλµ〉(E, t,M)

ελ
ReYλµ(θπ, φπ) (3.14)
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Figure 3.4: Acceptance η as a function of the π−, s−channel polar angle for 3.4 < E < 3.6,
0.5 < −t < 0.6 and M = 0.775 GeV
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Figure 3.5: Number of events corrected for acceptance for (nθnφ = 625).
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where ελ = 1 for λ = 0 and 1/2 for all other (λµ). Only positive values of M are used since
moments are real. The inversion procedure is not exact since the sum of (λµ) is typically
restricted to λ ≤ λmax (µ < λ). The expected (acceptance corrected) angular moments

〈Ỹλµ〉data(E, t,M) → 〈Ỹλµ〉(i, j, k) (3.15)

are computed by minimizing, in each (i, j, k) bin independently, the χ2 defined by

χ2(i, j, k) =
nθ
∑

l=1

nφ
∑

m=1

[

∆Nth(i, j, k, l,m) −
√

4π
nθnφ

∑λmax
λ=0

∑λ
µ=0〈Ỹλµ〉(i, j, k) ReYλµ(cos(θπ,l), φπ,m)

]2

δ2ijk
(3.16)

where δijk is the statistical error on ∆Ndata integrated over pion angles (l,m).
In Appendix A we show the details of the systematics study performed on the fit varying the

number of bins in the helicity angle and λmax. We concluded that the fits are reasonable stable
for low moments and the higher moments are clearly needed to describe the low pπ mass region
but those cannot be constrained by this method of fitting. The best compromise was obtained
with nθ = (25, 25), nφ = (25, 25) and λmax = 4. Fig. 3.7 show the resulting normalized moments
in one E and t bin, (3.2 < E < 3.4, 0.5 < −t < 0.6). When the fit results are compared to
the data, see fig. A.2, the difference remains within 15-20% showing that this methods is not
optimal.

3.2.4 Second and third methods: moments derived using efficiency-corrected
fitting function

For these methods corrections are applied to the theoretical parametrization of the data. The
theoretical expected yield is parametrized in terms of appropriate physics functions: production
amplitudes in one case and moments of the cross section in the other. This yield, corrected for
acceptance, is then compared to the measured yield (uncorrected). Parameters are extracted by
maximizing the likelihood function defined as:

L ∼ Πn
a=1

[

η(τa)I(τa)
∫

dτη(τ)I(τ)

]

. (3.17)

Here a represents a data event, n = ∆Ndat(i, j, k) is the number of data events in a given
(Eγ , t,M) bin, i.e. the fit is done independently in each bin, τa represents the set of kinematical
variables of the a-th event, η(τa) is the corresponding acceptance and I(τa) it the theoretical
function representing expected events distribution. The measure dτ includes the phase space
factor and the likelihood function is normalized to the expected number of events in the bin

n̄ =
∫

dτη(τ)I(τ) (3.18)

The advantage of this approach lies in avoiding the data binning and the large uncertainties
related to the correction in the regions with vanishing efficiencies. Comparison of the results of
the two different parameterizations of the theory allow one to access systematic errors. In the
following, we describe in more details the two approaches.

Method 2: parametrization with amplitudes

The theoretical expected yield in each bin is described as:

I(τa) = I(E,M, t, θπ , φπ) → I(i, j, k; θπ , φπ) = 4π

∣

∣

∣

∣

∣

∣

λmax
∑

λ=0

λ
∑

m=−λ

aλµ(i, j, k)Yλµ(θπ, φπ)

∣

∣

∣

∣

∣

∣

2

(3.19)
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Figure 3.7: Normalized moments in 3.4 < E < 3.6, 0.5 < −t < 0.6 bins using the first method.
Errors include the systematic uncertainty on the absolute normalization and moment extraction
procedure.
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The advantage of this parametrization is that the intensity function I(τa) is by construction
positive. However it can lead to ambiguous results since it has more parameters than can be
determined from the data. In addition, for practical reasons, the parametrization involves a
cutoff, λmax, in the maximum number of amplitudes. We also note that these amplitudes are
not the same as the partial wave amplitudes in the common sense of a di-pion photoproduction
amplitude since the later depend on the nucleon and photons spins.
The fit is performed minimizing the function (removing the irrelevant constants):

−2 lnL = −2
∆Ndata(i,j,k)

∑

a=1

ln η(τa)I(τa)+2∆Ndata(i, j, k) ln
∑

λ′µ′;λµ

ã∗λ′µ′(i, j, k)ãλµ(i, j, k)Ψλ′µ′;λ,µ(i, j, k)

(3.20)
where we introduced the rescaled amplitudes, ãλµ(i, j, k) defined by

ãλµ(i, , j, k) =
√

η(i, j, k)aλµ(i, j, k) (3.21)

and the acceptance matrix Ψ is computed using the reconstructed MC as

η(i, j, k)Ψλ′µ′;λµ(i, j, k) =
4π

∆Ngen.(i, j, k)

∆Nrec.(i,j,k)
∑

a=1

Y ∗
λ′µ′(θπ, φπ)Yλµ(θπ, φπ) (3.22)

Resealing of the coefficients leads to the condition:

λmax
∑

λ=0

λ
∑

µ=−λ

|aλµ(i, j, k)|2 = 1 (3.23)

which is checked at the end of each fit. After the coefficients aλµ are determined by maximizing
the log-likelihood, moments are computed as:

〈Ỹλµ〉(i, j, k) =
1√
4π

∫

dΩπI(i, j, k, θπ , φπ) ReYλµ(Ωπ) =
∑

λ1µ1;λ2µ2

√

(2λ1 + 1)(2λ + 1)

2λ2 + 1

× 〈λ10;λ0|λ20〉
1

2
[〈λ1µ1;λµ|λ2, µ2〉 + (−1)µ(µ → −µ)] aλ1µ1(i, j, k)a∗λ2 ,µ2

(i, j, k)

(3.24)

Fits are done using MINUIT with the analytical expression for the gradient, and using the
SIMPLEX procedure followed by MIGRAD. After each fit covariance matrix is checked and if
not positive definite the fit is restarted with random input parameters. At the end errors are
computed from the full covariance matrix.

As shown in Appendix A, see fig. A.6, this method is superior over the first analysis method
described in previous section (moments extracted from efficiency corrected data). For λmax ≥ 2
the low moments are already stable. Fig. 3.8 show the resulting normalized moments for λmax =
2 in the same E and t bin as in the previous paragraph (3.4 < E < 3.6, 0.5 < −t < 0.6).

Method 3: parametrization with moments

The theoretical expected yield in each bin is described as:

I(τa) = I(E,M, t, θπ , φπ) → I(i, j, k; θπ , φπ) =
√

4π
λmax
∑

λ=0

λ
∑

m=0

〈Ỹλµ〉(i, j, k) ReYλµ(Ωπ)

(3.25)
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Figure 3.8: Normalized moments in 3.4 < E < 3.6, 0.5 < −t < 0.6 bins using the second method
(parametrization with amplitudes). Errors include the systematic uncertainty on the absolute
normalization and moment extraction procedure.
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The parametrization in terms of the moments directly gives the quantities we are interested in
(moments 〈Ỹλµ〉). However the fit has to be restricted to make sure the intensity is positive. As
in the previous case, a cutoff, λmax, in the maximum number of moments has to be used. As
shown in Appendix A as the number of angular momentum basis states (λmax) is increased the
moments with low λ, are unchanged and the fit simply starts populating higher moments. The
implement the constraint on normalization of 〈Ỹ00〉 to the predicted number of events we follow
Ref. [13] The relation between acceptance corrected Ith and measured distribution Idata is given
by

Idata(τa) = η(τa)Ith(τa) (3.26)

The Ith and the acceptance function are expanded in the angular basis

Ith(τa) =
√

4π
∑

λµ

〈Ỹλµ〉 ReYλµ(Ωπ)

η(τa) =
√

4π
∑

λµ

ηλµ ReYλµ(Ωπ) (3.27)

The normalization condition

4π∆Ndata(i, j, k) =
∫

dΩπIdata(τ) (3.28)

gives

∆Ndata(i, j, k) =
∑

λµ

ηλµελ〈Ỹλµ〉 (3.29)

and enables to eliminate 〈Ỹ00〉

〈Ỹ00〉 =
∆Ndata(i, j, k)

η00
−

∑

λ>0,µ

ηλµελ〈Ỹλµ〉 (3.30)

The expected (acceptance corrected) distribution is than given by:

Ith(τa) =
√

4π
∆Ndata(i, j, k)

η00
Y00(Ωπ) +

√
4π

∑

λ>0,µ

[

ReYλµ(Ωπ) −
ηλµ

η00
ε0Y00(Ωπ)

]

〈Ỹλµ〉 (3.31)

The function to be minimized with respect to 〈Ỹλµ〉 (λ > 0) is than given by

−2 lnL = −2
∆Ndata(i,j,k)

∑

a=1

ln Ith(τa) (3.32)

with the coefficients ηλµ computed using the accepted MC events

ηλµ(i, j, k) =

√
4π

∆Ngen.(i, j, k)

∆Nrec.(i,j,k)
∑

i

ReYλµ(Ωi)

ελ
(3.33)

The plot of the normalized moments with λmax = 4. in shown in Fig. 3.9. Results are similar to
what obtained with the second method showing the same stability against lmax truncation and
a similar goodness of the fit (see fig. A.9 in Appendix A).
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Figure 3.9: Normalized moments in 3.4 < E < 3.6, 0.5 < −t < 0.6 bins using the third method
(parametrization with moments). Errors include the systematic uncertainty on the absolute
normalization and moment extraction procedure.
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3.2.5 Method comparison and final results

Figures 3.10 and 3.11 show the superposition of the moments extracted by using the three
methods. From these, we conclude that qualitatively they all lead the same results. Moments
with µ +=0 are less stable then µ=0, reflecting the azimuthal anisotropy of the CLAS detector.
Out of the three methods the most stable results are obtained by using log-likelihood fit with the
parametrization with amplitudes although we do find occasionally large bin-to-bin fluctuations.
Moreover for the third method the likelihood fit was performed initiating parameters in three
different ways (see Appendix A for more details). Therefore the final results will be given as the
average of the second (parametrization with amplitudes) and the third method (parametrization
with moments) with the three fit initializations:

Yfinal =
∑

i=1,4 Methods

Yi

4
(3.34)

(3.35)

The total error on the final moments was evaluated adding in quadrature the statistical error,
δMINUIT as given by MINUIT, and two systematic error contributions: δYsyst fit related to the
moment extraction procedure, and δYsyst norm, the systematic error associated to the photon
flux normalization.

δYfinal =
√

δ2MINUIT + δ2syst fit + δ2syst norm (3.36)

with:

δYsyst fit =

√

√

√

√

∑

i=1,4 Methods

(Yi − Yfinal)2

3
(3.37)

δYsyst norm = 10% · Yfinal (3.38)

(3.39)

For the most part of the data points, systematic incertainties dominate over the statistical error.
A sample of final experimental moments are shown in figures 3.12 and 3.13 .

3.3 The γp → pρ0 cross section

To check the whole procedure, in this paragraph we compare the results of the ’standard’ analysis
presented in Chap. 2.3 with what obtained by the angular moment analysis (method 3) described
in this Chapter. As pointed out in the previous paragraph, the 〈Y00〉 moment can be directly
connected to the differential cross section. In the ρ region this can also be written as:

dσ

dtdM
=

2

π

[

dσ

dt

]

ρ

mρMΓ(M)

(m2
ρ − M2)2 + m2

ρΓ2(M)
+ polynomial (3.40)

and

Γ(M) = Γρ

(

q

qρ

)3
D2(qρR)

D2(qR)
= Γρ

(

q

qρ

)3
(qρR)2 + 1

(qR)2 + 1
(3.41)

where R = 1/0.2GeV and the background under the prominent ρ peak is described by a first
order polynomial (A2 + B2M).
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Figure 3.10: Comparison of normalized moments in 3.4 < E < 3.6 GeV and 0.5 < −t < 0.6GeV2

bins, obtained by the three methods: efficiency corrected data (black), parametrization with
amplitudes (red) and parametrization with moments (green). Errors include the systematic
uncertainty on the absolute normalization and moment extraction procedure.
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Figure 3.11: Comparison of normalized moments in 3.4 < E < 3.6 GeV and 0.5 < −t < 0.6
GeV2 bins, obtained by the three methods: efficiency corrected data (black), parametrization
with amplitudes (red) and parametrization with moments (green).
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Figure 3.12: Final experimental moments (in red) in 3.4 < E < 3.6 GeV and 0.5 < −t < 0.6
GeV2 bins as average of different extraction methods.
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Figure 3.13: Final experimental moments (in red) in 3.4 < E < 3.6 GeV and 0.5 < −t < 0.6
GeV2 bins as average of different extraction methods.
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Figure 3.14: Fit of the mass dependence of the 〈Y00〉 moment in the mass range 0.6 < M <
0.9 GeV and E = 3.2 − 3.4.

In each energy and −t bin, the mass dependence of the differential cross section obtained

from the 〈Y00〉 moment was fit to extract
[

dσ
dt

]

ρ
. The parameters of the fit were: Γρ,mρ, A,B

and
[

dσ
dt

]

ρ
. Figure 3.14 shows examples of the fit results for the mass range 0.6 < M < 0.9 GeV

and E = 3.2 − 3.4.
In Figs. 3.15 we show the variations of mass and width across the t-bins. The extracted mass

of the ρ meson, is systematically lower than the nominal (by 10−20 MeV) this is due to lack of
interference effects, in particular with the S-wave in the fitting function and will be taken into
account in the analysis of partial waves discussed in the next Chapter.

The extracted cross section for the four energy bins is shown in Fig. 3.16 in comparison with
results obtained by the ‘standard‘ analysis as well as the world data.
This result was obtained applying the standard technique to separate a prominent signal from
the background (Breit-Wigner fit). It can not be applied to other mesons populating the ππ
spectrum (f0(980) and f2(1270)) since their strength is not big enough and the model dependence
in parameterizing the background does not allow to derive reliable results. In the next Chapter
we’ll derive again the cross section of the ρ, as well as for the other mesons dominating the single
waves of the ππ system by implementing the full partial wave analysis.
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Figure 3.15: Fitted values of mρ and Γρ as a function of −t.
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Figure 3.16: Differential cross section for the reaction γp → pρ extracted from the analysis of
the angular moments compared to world data.
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Chapter 4

Theoretical interpretation

4.1 Introduction

The spectroscopy of scalar mesons is a field of active investigations both on experimental and
theoretical sides. Scalar mesons have been observed in hadron-hadron collisions, γγ collisions
and in decays of various mesons like φ, J/Ψ,D and B. Their photoproduction cross sections are
relatively small as compared to the dominant production of vector mesons. One can extract,
however, an information about the S-wave strength in photoproduction processes by performing
the partial wave analysis. An interference between the S-wave and the dominant P-wave was
discovered in studies of the K+K− photoproduction on hydrogen in experiments performed at
DESY [9] and Daresbury [10]. The moments of the angular distribution of the photoproduced
K+K− system obtained in these two experiments contained the information about the S-P
wave interference. Using this information the authors of [11] were able to extract the S-wave
photoproduction cross section near the K+K− threshold. In the present analysis we focus
on π+π− photoproduction at photon energies between 3.2 GeV and 3.8 GeV in the range of
momentum transfer squared −t between 0.1 GeV2 and 1 GeV2 whereas the π+π− effective mass
Mππ varies from 0.4 GeV to 1.4 GeV. We are not aware of any previous sightings of scalars in
particular f0(980) in photo-production of pion pairs.

This effective mass region is dominated by the production of the ρ(770) resonance in the P-
wave. One can learn, however, from other experiments like pion-nucleon collisions π−p → π+π−n
[13, 14] or nucleon-antinucleon annihilation [15] that in the ππ system the S-wave resonant
states can also be formed. These resonances have been neglected in previous experimental
analyses of photoproduction and to our knowledge the current analysis is the first one which
explicitly takes into account the possibility that the S-wave is produced in the π+π− system.
The production of the S-wave results in the emergence of the interference patterns. Former
experiments at SLAC [16, 17] and DESY [18, 19] revealed some phenomena accompanying
the ρ resonance photoproduction. Among the observed characteristics of this reaction were
a shift of the maximum of the π+π− effective mass distribution with respect to the nominal
ρ mass and the shape asymmetry as compared to the Breit-Wigner distribution. Moreover, a
diffractive nature of the photoproduction process and the shrinkage of the diffractive peak with
growing photon energies were observed. It has been shown that while the s-channel helicity is
approximately conserved, some deviations are seen, especially at larger effective masses Mππ

and larger momentum transfers squared |t| . The shift of the mass distribution maximum as
compared to the ρ position observed in the hadronic collisions and the asymmetry mentioned
above were quite successfully described in terms of the model formulated by Söding [20] and its
numerous modifications [21, 22, 23, 24]. In the Söding model these properties are attributed to
the interference of the dominating ρ meson production (with its subsequent decay into π+π−)
described in terms of the Breit-Wigner amplitude and the t-channel pomeron exchange with
the amplitudes corresponding to the Drell-type diagrams in which the photon dissociates into

45
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π+ and π− and one of the pions is elastically scattered off the proton. This simple picture
is somehow distorted by additional production mechanisms namely the s-channel production
of baryon resonances ∆++ and ∆0. However, from works [16, 18, 19] as well as from more
recent experimental studies, one can infer that the production of baryon resonances dominates
at lower incident photon laboratory energies (below 2 GeV). In particular, the data obtained
with SAPHIR detector at ELSA for laboratory photon energies between 0.5 GeV and 2.6 GeV
show that the contribution of the baryonic resonances to the π+p and π−p mass distributions
gradually decreases with photon energy [25].

The angular distribution of photoproduced mesons and the observables derived from it like
moments of the angular distribution 〈YLM 〉 and the density matrix elements ρLL′

MM ′

1 are the
best to look for interference patterns. In experiments [16, 17, 18] these observables have been
used to analyze the properties of helicity amplitudes describing the photoproduction process.
Unfortunately only the dominant spin 1 partial wave of the π+π− pair has been taken into
account. No attempt has been made to obtain information about the S-wave amplitude.

More recently, the HERMES group at DESY [26] investigated the interference of the P-wave
in the π+π− system with the S- and D-waves in the π+π− electroproduction process showing that
such interference effects are measurable. The large photon virtuality Q2 >3 GeV2 is, however,
a crucial factor which distinguishes this analysis from the photoproduction one.

Theoretical models for the π+π− photoproduction have been investigated in a series of ar-
ticles. Gomez Tejedor and Oset [28] applied the effective Lagrangian’s to construct the pho-
toproduction amplitudes. Their approach, however, is limited to quite low photon energies of
800 MeV and effective masses Mππ smaller than 1 GeV. The model proposed in [27] pursues a
two stage approach for the π+π− S-wave photoproduction. First, a set of Born amplitudes is
calculated corresponding to photoproduction of the π+π−, π0π0, K+K− and K0K0 pairs. Then
the photoproduced meson pairs are subject to the final state interactions to end up with the
π+π− system. The Born amplitudes were calculated with two kinds of propagators, namely the
normal and Regge type ones. The final state interactions have been parameterized in terms of
phase shifts and inelasticities with an application of the coupled channel formalism developed in
articles [29, 30, 31]. The coupled channel calculations were separately performed for all isospin I
components of the transition matrix, i.e. for I=0 and 1 in case of kaons and I=0 and 2 in case of
pions. Thus the S-wave amplitudes in that model can account for the existence of the isoscalar
σ, f0(980) and f0(1500) and the isovector a0(980) and a0(1450) resonances. The coupling of the
KK isovector channel with the πη amplitude is described in [32].

One remark is relevant here. Each complete analysis of the π+π− photoproduction should
include the S-wave amplitudes in addition to the P-wave. This results in the appearance of
additional moments of angular distribution and new density matrix elements. In this analysis
we focus on these new elements.

4.2 Partial Wave Analysis

In the Chapter 3 we discussed how moments of the angular distribution of the π+π− system,
YLM were extracted from the data in each bin in photon energy, momentum transfer and di-pion
mass. The moments can be written in terms of amplitudes representing di-pion production. In
this section we summarize results of theoretical analysis of these amplitudes.

As reported in the previous Chapter, the production cross section is directly related to 〈Y00〉
moment:

dσ

dtdM
=
∫

d2Ω
dσ

dtdMd2Ω
= 〈Y00〉 (4.1)

1In this section we switch to a standard notation of angular momentum variables, L, M instead of λ, µ used in
the previous Chapter.
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while higher moments correspond to:

〈YLM 〉 =
√

4π
∫

d2ΩYLM (Ω)
dσ

dtdMd2Ω
(4.2)

The differential cross-section for di-pion production, in units of µb/0.1GeV 210MeV used in
Chapter 3 can be written as:

dσ

dtdMd2Ω
=

0.3893

64πm2
NE2

γ

κ

2(2π)3
1

4

∑

λ,λ′λγ

|A(λ, λ′, λγ , Eγ , t,M,Ω)|2 (4.3)

where all dimension-full quantities given in units of GeV. The di-pion phase space factor is
proportional to the breakup momentum κ =

√

M2/4 − m2
π. In terms of partial waves the di-

pion production amplitudes A are given by

A(λ, λ′, λγ , Eγ , t,M,Ω) =
∑

lm

alm(λ, λ′, λγ , Eγ , t,M)Ylm(Ω) (4.4)

which leads to the following expression for the moments

〈YLM 〉 = N
∑

l′m′,lm

(−1)m
′

√

(2l + 1)(2l′ + 1)

2L + 1
〈lm, l′ − m′|L − M〉〈l0, l′0|L0〉

×
1

2

∑

λ,λ′,λγ

alm(λ, λ′, λγ , Eγ , t,M)a∗l′m′(λ, λ′, λγ , Eγ , t,M) (4.5)

where N is the phase space factor. Parity conservation implies

alm(λ, λ′, λγ , E, t,M) = (−1)λ−λ
′+λγ+mal,−m(−λ,−λ′,−λγ , E, t,M) (4.6)

which leads to

〈YLM 〉 = N
∑

l′m′,lm

(−1)m
′

√

(2l + 1)(2l′ + 1)

2L + 1
〈l0, l′0|L0〉

×
1

2

[

〈lm, l′ − m′|L − M〉 + (−1)M 〈lm, l′ − m′|LM〉
]

alma∗l′m′ (4.7)

with the helicity amplitudes involving only the λγ = +1 states,

alma∗l′m′ =
∑

λ,λ′
alm(λ, λ′, λγ = +1, Eγ , t,M)a∗l′m′(λ, λ′λγ = +1, Eγ , t,M) (4.8)

Thus parity implies
〈YLM 〉 = (−1)M 〈YL−M 〉 (4.9)

which together with the Y ∗
LM = (−1)MYL−M property of the spherical harmonics also im-

plies that moments are real. The explicit forms of the moments investigated here, with
l = 0(S), 1(P ), 2(D), 3(F ) waves are given in Appendix B.

4.2.1 Parametrization of the partial waves

The role of the nucleon helicity

In each energy and momentum transfer and for each l,m there are four independent partial wave
amplitudes for given l,m that are functions of s = M2,

alm = alm(λ, λ′, λγ = +1, s) (4.10)
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corresponding to the four combinations of initial and final nucleon helicity. In general it is
expected that dominant amplitudes require minimal photon helicity flip, i.e.

|al1| > |al0|, |al2| > |al−1| (4.11)

corresponding to photon helicity flip by zero, one and two units respectively. In addition, m = 2
waves require l ≥ 2 (D and F waves) which are expected to be small in the mass range considered.
We thus restrict the analysis to |m| ≤ 1.

Without polarization information it is difficult to separate out amplitudes differing by the
helicity of the nucleon. The interference between the dominant P waves, in the ρ region seen in
the 〈Y21〉 moments indicates that P+ and P0 amplitudes are out of phase. For a single nucleon-
helicity amplitude this would imply a difference between the 〈Y11〉 and 〈Y10〉 moments, arising
primarily from the interference between the S wave and the P+ and P0 waves, respectively in
the ρ region where the S amplitude does not vary substantially. The data suggests however that
both 〈Y11〉 and 〈Y10〉 peak near the position of the ρ. To accommodate such behavior at least
two nucleon-helicity amplitudes are required.
For example the dominant P+ amplitude may originate from diffractive, helicity-non-flip ampli-
tude and the P0 from a nucleon-helicity-flip vector exchange, which is also expected to dominate
S-wave production. This would also explains why 〈Y11〉 and 〈Y10〉 moments have comparable
magnitudes. We will thus keep two nucleon helicity amplitudes.

According to that, the complete set of amplitudes that will be fitted to the moments, in each
Eγ and t bin, is given by

al,m,i(s) = alm(λ, λ′, λγ , s) (4.12)

with i = 1, 2 for each l,m and |m| ≤ 1. The two nucleon helicity amplitudes are assumed to
correspond to helicity non-flip (i = 1) and helicity-flip (i = 2).

Analytic properties of amplitudes

Since strong interactions conserve isospin it is convenient to write the ππ amplitudes in the
isospin basis. We will use Greek indices to denote the various channels that couple to ππ of
given isospin, I in the partial wave l, e.g. α = 1 corresponds to ππ, α = 2 to KK̄, α = 3 to
ηη etc. In the subsequent analysis we will restrict the channel space to include the ππ and KK̄
channels which are the only channels relevant in the energy range considered. As a function of
s partial wave amplitudes have cuts for s > 4m2

π (right hand cut) and for s < m2
π (left hand

cut). The right hand cut corresponds to particle production threshold in the reaction γp → Xp
and the left hand cut originates from thresholds in crossed channels (e.g. π−p → γπ−p). Since
thresholds in γp → Xp are the same as for π+π− → π+π− the right hand cut discontinuity of
alm,i(s) is the same as for the corresponding ππ scattering amplitude. Optical theorem states
that partial wave photo-production amplitudes of good isospin aI

l,m,i,α(s) have discontinuities
for positive s proportional to those of the strong interactions scattering amplitudes,

aI
l,m,i,α(s+) − al,m,i,α(s−) = −2i

∑

β

[

t(s+)
]

αβ ρββ(s)aI
l,m,i,β(s

−) (4.13)

Here tαβ(s) = tl.I(s)αβ is the scattering amplitude between channels α and β in the l, I partial

wave and ρ(s)αβ = kβ/8π
√

s = σβ(s)/16π is the phase space factor with σβ =
√

1 − 4m2
β/s. In

the following we will hide the channel index and write equations in a matrix notation in the
channel space. We will also drop the indices l, I denoting partial waves and the nucleon helicity
label i since these are not mixed by the interactions in the ππ system. Subsequently we define
amplitudes ã by removing threshold behavior, ã ≡ [k]−la where [k] = [k]α,β = kα/

√
sδα,β . The

new amplitudes satisfy

ã(s+) − ã(s−) = −2i[k]−lt(s+)ρ(s)[k]lã(s−) (4.14)
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For each partial wave (l,m, i) we introduce a function ãL(s) that has the same discontinuity
across the left hand cut as the photo-production amplitude ã(s), i.e

ã(−s − iε) − ã(−s + iε) = ãL(−s − iε) − ãL(−s + iε) (4.15)

but has not right hand cut discontinuity, i.e.

ãL(s + iε) − ãL(s − iε) = 0 (4.16)

We also express the scattering amplitudes t(s) as a ratio of two functions (matrices in channel
space) N(s) which as only discontinuities for negative s and D(s) which has the discontinuity
for positive s that are determined by unitarity,

t = [D(s)]−1 N(s) (4.17)

Finally we define the function,

T (s) ≡ D(s) ≡ D(s) [k]l
[

ã(s) − ãL(s)
]

(4.18)

From the properties of ã and ãL it follows that T has only right hand cut (positive s) discontinuity
which is given by,

T (s+) − T (s−) = −[D(s+) − D(s−)][k]lãL(s) = −2iN(s)ρ(s)[k]lãL(s) (4.19)

The last relation follows from unitarity which relates the positive-s discontinuity of D(s) to the
scattering amplitude,

D(s+) − D(s−) = 2iN(s)ρ(s) = 2iD(s+)t(s)ρ(s) (4.20)

Further discussion of the unitarity constraints and properties of D(s) and N(s) functions is
presented in the Appendix. Using Cauchy theorem it is now possible to write the following dis-
persion relation for the photoproduction amplitude which include integration over the positive-s
only,

ã(s) = ãL(s) −
1

π
[k]−lD−1(s)

∫

sth

ds′
N(s′)ρ(s′)[k′]lãL(s′)

s′ − s
(4.21)

and finally

a(s) = aL(s) −
1

π
D−1(s)

∫

sth

ds′
N(s′)ρ(s′)[k′]lãL(s′)

s′ − s

= aL(s) −
1

π
D−1(s)

∫

sth

ds′
N(s′)ρ(s′)aL(s′)

s′ − s
(4.22)

The amplitudes ãL(s) represent our ignorance about the production process and will be extracted
by fitting this formula to the acceptance corrected moments. Relation between moments and the
partial waves a(s) = al,I,i,ππ is given in the Appendix. The important fact about the functions
ãL is that they do not have singularities for positive s thus can be expanded in a Taylor series
for s > 0

ãL(s) = A + Bs + Cs2 + · · · (4.23)

with A,B · · · being matrix of numerical coefficients to be determined by the fit. This expansion
has another physical significance. Suppose ãL(s) has a pole at negative s, s = −M2. Physically
it would correspond to an exchange of a particle of mass M in the t channel of the ππ system 2.
For s > 0,

ãL(s) =
1

s + M2
=

1

M2

[

1 −
s

M2
+

s2

M4
· · ·

]

(4.24)

2To be more precise if a mass-M particle is exchanged in the t-channel and s-wave partial wave has a cur
rather than a pole for negative-s
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thus the magnitude of the coefficients A,B, · · · is related to mass of the exchanged particle in the
t channel thus to the physical size of the production region. Further insight into the production
process can be inferred by comparing the contribution from the real and imaginary parts of the
dispersive integral in Eq. 4.22. These are obtained using

1

s′ − s
= PV

1

s′ − s
+ iπδ(s′ − s) (4.25)

to obtain

a(s) =
1

2
[I + S(s)] aL(s) −

1

π
D−1(s)PV

∫

sth

ds′
N(s′)ρ(s′)aL(s′)

s′ − s
(4.26)

Here S = Sαβ is the S-matrix elements between channels αβ and I = δαβ is the identity
matrix in the channel space. The term containing the S-matrix corresponds to the contribution
from the on-shell scattering: it represents direct production of ππ or KK̄ pairs which later (via
S) re-scatter to the final π+π− state. Direct resonance production in the s-channel is described
by the principal value (PV ) part of the integral. However, resonance contribution can also
appears in the on-shell scattering term via re-scattering (or final state interaction). Thus when
extracting cross-section for direct resonance production we will only use the PV contribution
to the partial wave, even though it is the full expression in Eq. A.3 that is used in fitting the
moments.

Using a polynomial expansion for ãL the dispersion relation in Eq. 4.22 has to be subtracted.
The specific forms of dispersion relations for individual partial waves and the count of the fit
parameters for each partial wave are summarized in the Appendix.

4.3 Results and error evaluation

4.3.1 Fit of the moments

We fit all moments 〈YLM 〉 with L < 4 and M < 2 using up to l = 3(F ) waves as described above.
In figures 4.1 and 4.2 we present a sample of the fit results for Eγ = 3.3 GeV (3.2 − 3.4 GeV
energy bin) and t in the range 0.5 < |t| < 0.6 GeV2. To properly take into account the error
contributions (statistical and systematic) to the experimental moments described in Sec. 3.2.5,
the four sets of moments were individually fit and the fit results were averaged obtaining the
central value shown by the black line in the figures. The error band, shown as a gray area, was
calculated following the same procedure adopted for the experimental moments (Sec.. 3.2.5).

Error evaluation

The final error was computed as the sum in quadrature of the statistical error of the fit, and two
systematic error contributions: the first related to the moment extraction procedure, evaluated
as the variance of the four fit results; the second associated to the photon flux normalization
estimated to be 10%. Central values and errors for all the observables of interest discussed in
next sections were derived from the fit results with the same procedure.

4.3.2 Amplitudes

The square of the magnitude of S,P,D and F partial waves summed over nucleon helicities
derived by the fit are shown in Fig. 4.3 for a specific energy and −t bin. The three bottom plots
show, for each wave with L += 0, the amplitudes for the three possible values of λππ, the helicity
of the di-pion system. Note that we use, as a reference, the wave with photon helicity, λγ = +1.
Thus λππ = 1 corresponds to no-helicity flip (s-channel helicity conserving) amplitude, which,
as expected is the dominant one, and λππ = 0,−1 correspond to one and two units of helicity
flip in the ”upper” vertex, respectively. The top panel shows the magnitude of the sum of the
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Figure 4.1: Fit result (black line) of the final experimental moments (in red) in 3.4 < E < 3.6
GeV and 0.5 < −t < 0.6 GeV2 bins.
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Figure 4.2: Fit result (black line) of the final experimental moments (in red) in 3.4 < E < 3.6
GeV and 0.5 < −t < 0.6 GeV2 bins.
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Figure 4.3: Upper plots: magnitude of S,P,D and F partial waves derived by the fit in the
3.4 < E < 3.6 GeV and 0.5 < −t < 0.6 GeV2 bin. Bottom plots: the same amplitudes for the
three possible values of λππ (from left to right +1, 0 and -1).

three helicity amplitudes. The same plots, removing the part of the amplitudes originating from
on-shell scattering, as described in Sec. 4.2.1, are shown in Fig. 4.4. As discussed in Appendix A,
for the S − wave a detailed study has been done on the effect of truncation to Lmax = 4 to the
extracted cross sections (Appendix A.4) and on the separation of the resonant part from the
whole wave (Appendix A.5.2). These two sources of systematic uncertainties were estimated to
be 25% and 20% respectively. The first was included in the S − wave error bands on squared
amplitudes in all energy and −t bins while the latter was added to the error on the resonant
part only. It is worth to notice that this systematic error represents a small contribution to the
total error, dominated by the systematic error introduced by the difference between the four fit
procedures used in the moments extraction.

4.3.3 The spin density-matrix elements

From the production amplitudes derived by the fit we calculated the spin density-matrix elements
for the P wave and the interference between P and S waves. Some selected results are shown
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Figure 4.4: The same as in fig. 4.3 without on-shell scattering component.
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Figure 4.5: Spin density matrix elements for the P wave in the 3.4 < E < 3.6 GeV and
0.5 < −t < 0.6 GeV2 bins.

in figures 4.5 and 4.6. Since these observables do not depend on the photon flux normalization,
the error bands do not include the 10% uncertainty mentioned above. Figures 4.7 and 4.8
show the spin density-matrix elements for the P wave measured by Ballam and coauthors in
Refs. [16] and [17], in a similar kinematic range (Eγ ∼ 2.8,∼ 4.7 GeV, 0.02 < −t < 0.4 GeV2 and
Eγ ∼ 9.3 GeV, 0.02 < −t < 0.8 GeV2 respectively). Even if different measurement conditions
prevent a direct comparison, qualitatively our data show the same behavior with a reduced error.
Figure 4.9 shows the superposition of low energy Ballam’s data points to our closest kinematic
(3.0 < E < 3.2 GeV and 0.4 < −t < 0.5 GeV2). As expected, the two matrix elements ρ10 and
ρ11 agree very well since they have a weak dependence on −t while ρ00 shows a similar behaviour
but different values being more sensitive to the momentum transfer. If one compares the larger
−t bins we measured, the difference increaseas showing that extrapolating our data to lower −t
would probably give a good agreement with previous measurements.
Around Mππ = 980 MeV an interference pattern clearly shows up in the S-P wave interference
term, corresponding to the contribution from the f0(980) meson.

4.3.4 Cross-sections

Differential cross-section dσl/dt for individual waves and mass regions (Mass ∓ Γ) can be ob-
tained integrating the corresponding amplitude. Cross section for f0(980), ρ and f2(1270) mesons
were obtained integrating the S, P and D waves in the mass range 0.98∓ 0.04 GeV, 0.75∓ 0.15
GeV, and 1.275 ∓ 0.185 GeV respectively after subtracting the on-shell scattering component.
Figures 4.10, 4.11 and 4.12 show the f0(980), ρ and f2(1270) cross sections in the 4 energy bins.
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Figure 4.6: Spin density matrix elements for the interference between S and P wave in the
3.4 < E < 3.6 GeV and 0.5 < −t < 0.6 GeV2 bins.

Figure 4.7: Spin density matrix elements for the P wave from Ref. [16].
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Figure 4.8: Spin density matrix elements for the P wave from Ref. [17].
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Figure 4.9: Spin density matrix elements for the P wave in the 3.0 < E < 3.2 GeV and
0.4 < −t < 0.5 GeV2 bins. Black dots are data points from Ref. [16], taken in a similar
kinematic (Eγ ∼ 2.8, GeV, and 0.02 < −t < 0.4 GeV2).
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Figure 4.10: Differential cross section γp → pf0(980) obtained integrating S wave magnitude in
the Mππ range 0.98 ∓ 0.04 GeV without the on-shell scattering component.

As explained before this corresponds to the direct resonance production only disregarding possi-
ble contributions from processes where, for example, two pions are photoproduced and rescatter
forming an s-channel resonance. Figures 4.13, 4.14 and 4.15, show the cross sections in the
f0(980), ρ and f2(1270) regions as defined above when the full amplitudes are integrated (direct
resonance production + on-shell rescattering processes). These clearly include the background
and the interference terms. Errors shown on the plots reflect the systematic error of the fit
procedure as described in Par. 4.3.1
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Figure 4.11: Differential cross section γp → pρ obtained integrating P wave magnitude in the
Mππ range 0.75 ∓ 0.15 GeV without the on-shell scattering component.
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Figure 4.12: Differential cross section γp → pf2(1275) obtained integrating P wave magnitude
in the Mππ range 1.275 ∓ 0.185 GeV without the on-shell scattering component.
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Figure 4.13: Differential cross section associated to the (L, I) = (0, 0) wave integrated in the
mass region of the f0(980) resonance (0.98 ∓ 0.04 GeV).
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Figure 4.14: Differential cross section associated to the (L, I) = (1, 1) wave integrated in the
mass region of the ρ resonance (0.75 ∓ 0.15 GeV).
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Figure 4.15: Differential cross section associated to the (L, I) = (2, 0) wave integrated in the
mass region of the f2(1270) resonance (1.275 ∓ 0.185 GeV).
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Appendix A

Extraction of moments: systematic
studies

In this paragraph we show the results obtained varying parameters of the methods used to
extract moments of the di-pion angular distribution. All checks and studies reported in the
Appendix were made using 50% of the MonteCarlo statistics while final results reported in the
main text were made using whole MC events.

A.1 First method: moments of efficiency corrected data

Here we show the results obtained by minimizing the χ2 defined in eq. 3.15 in one E and t bin,
(3.4 < E < 3.6, 0.5 < −t < 0.6). We vary the λmax from 0 up to λmax = 6. In Figs. A.1 we show
the lowest (λ ≤ 2) normalized, acceptance corrected moments 〈Yλµ〉 as a function of the di-pion
mass for various λmax. We also varied the total number of bins in the helicity angles. Increasing
the value of λmax does not improve the fit since higher moments become less constrained. This
happens for example for λmax = 6 when nθ = nφ = 10.

In Fig. A.2, we show the difference between the measured number of events and the number
predicted by the fit. The difference is systematically improved as the number of moments in the
fit is increased.

Finally in Figs. A.3, A.4 we compare the measured pπ invariant mass distribution with that
predicted by the fit.

A.2 Method 2: parametrization with amplitudes

The results for selected low moments are shown in Fig. A.5, A.6 and A.10. In particular from the
difference plots it is clear that this method is superior over the first analysis method described
in previous section (moments extracted from efficiency corrected data). For λmax ≥ 2 the low
moments are already stable. Clearly, to get the correct ∆(1232) shape in the pπ masses, one
needs to go to very high λmax ∼ 10 but this is not necessary if we are interested in analyzing
the ππ mass to pull out the ρ (P -wave) or f0(980) (S-wave) signals.

A.3 Method 3: parametrization with moments

The plot of the acceptance corrected moments in shown in Fig. A.8. Looking at the difference
plots (fig. A.9), the same conclusion about the goodness of the fit as for the Method 2 are derived.
As the number of angular momentum basis states (λmax) is increased the moments with low λ,
are unchanged, albeit they become nosier and the fit simply starts populating higher moments.
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Figure A.1: Acceptance corrected moments 〈Yλµ〉 for 3.4 < E < 3.6, 0.5 < −t < 0.6 bin as a
function of the di-pion mass and varying λmax. The lowest moment 〈Y00〉 corresponds to the
absolute cross section. Angular binning: nθ = 25, nφ = 25. With curse binning in the helicity
angles higher moments are not well constrained.
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Figure A.2: Difference between measured (acceptance uncorrected) number of events and pre-
dicted, acceptance uncorrected number of events computed from the fitted moments weighted
with the experimental acceptance, and divided by the measured number of events in each bin.
Angular binning: nθ = 25, nφ = 25
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Figure A.3: Measured (acceptance uncorrected) number of events as a function of the pπ+ invari-
ant mass, compared to the predicted distribution computed used the fitted moments weighted
with the experimental acceptance. Angular binning: nθ = 25, nφ = 25.
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Figure A.4: Measured (acceptance uncorrected) number of events as a function of the pπ− invari-
ant mass, compared to the predicted distribution computed used the fitted moments weighted
with the experimental acceptance. Angular binning: nθ = 25, nφ = 25.
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Figure A.5: Acceptance corrected moments 〈Yλµ〉 for 3.4 < E < 3.6, 0.5 < −t < 0.6 bin
computed using log-likelihood fit with the first parametrization as a function of the dipion mass
and varying λmax. The lowest moment 〈Y00〉 corresponds to the absolute number cross section.
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Figure A.6: Difference between measured (acceptance uncorrected) number of events and pre-
dicted, acceptance uncorrected number of events computed from the fitted moments weighted
with the experimental acceptance, and divided by the measured number of events in each bin.
Log likelihood method used.
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Figure A.7: Measured (acceptance uncorrected) number of events as a function of the pπ+ invari-
ant mass, compared to the predicted distribution computed used the fitted moments weighted
with the experimental acceptance. Log likelihood method used. a) π+p b) π−p
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Figure A.8: Acceptance corrected moments (−1)µ〈Ỹλµ〉 for 3.4 < E < 3.6, 0.5 < −t < 0.6 bin
computed using log-likelihood fit with the second parametrization as a function of the peon mass
and varying λmax. The lowest moment 〈Y00〉 corresponds to the absolute cross section.

As already observed, higher moments are mandatory to obtain the correct spectrum of the pπ
systems. To check the sensitivity of the the likelihood fit to the parameter initialization, three
different procedures were tested: 1) random initialization, 2) starting with parameters related to
λmax = 2 obtained by the fit using λmax = 2 (random initialized) and random initialization for
λmax from 2 to 4; 3) starting with parameters obtained in 2) and then releasing parameters for
moments with λmax = 2. Results from the three procedures are shown in figures 3.10 and 3.11.
Different methods give consistent results. As shown in par. 3.2.5 the difference between the
different procedures is used to evaluate the systematic error related to the moment extraction.

A.4 Effect of truncation to Lmax = 4

As discussed in Chap. 3.2.5, we derived the moments of the angular decay distribution using
efficiency corrected fitting functions with two different parametrizations and different parameter
initialization:

• Method 1: fit using parametrization with amplitudes;

• Method 2a: fit using parametrization with moments and random initialization of fit pa-
rameters;

• Method 2b: fit using parametrization with moments and L < 2 parameters fixed to the
results obtained by using Lmax = 2 fit;

• Method 2c: fit using parametrization with moments and L < 2 parameters initialized to
Lmax = 2 fit.

Independently of the choice of fit parametrization, a truncation in the number of waves (Lmax)
in the fit bases is necessary for practical reasons. All results reported in the note were obtained
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Figure A.9: Difference between measured (acceptance uncorrected) number of events and pre-
dicted, acceptance uncorrected number of events computed from the fitted moments weighted
with the experimental acceptance, and divided by the measured number of events in each bin.
Log likelihood method used.

with Lmax = 4. The rational of this choice is twofold: first the analysis focused on the extraction
of low moments that are less affected by this truncation; second, including higher waves leads to
larger fluctuation in the extracted moments without significant effect on the extracted moments
for Mππ < 1.1 GeV. Some systematic studies were performed to evaluate the goodness of this
choice and evaluate the error related to the truncation.

A.4.1 Effect on observables

The Lmax = 4 fit reproduces the main features of the data in many observables (when Mππ < 1.1
GeV). We compared the measured quantities to the results obtained by the fit:
- helicity angles: see Fig. A.11 where decay angles are plot;
- invariant masses: see Fig. A.12 reporting Mpπ for three different Mππ intervals Mππ =

0.475 ± 0.01, Mππ = 0.775 ± 0.01,Mππ = 1.295 ± 0.01. As shown by the plots above, the data
features are well reproduced by the fit results using Lmax = 4. It should be noticed that the
discrepancy between the data and Lmax = 4 fit results in the Mpπ spectrum shown for example
in fig. A.10 is due to events with Mππ > 1.3 GeV, i.e. a range that is not in the main focus of
this analysis.

A.4.2 Evaluation of the truncation error on the S − wave using simulations

To have a quantitative estimate of the truncation error we performed a detailed analysis using
MC events. We fitted the data with Lmax = 8 using Method 2a, we generated events using
the fit results and then we extracted moments from the pseudo-data using both Lmax = 4
and Lmax = 8. The latters were analyzed using the same procedure developed for real data
up to the extraction of the f0(980) cross section. At each step we compared the Generated
and Reconstructed (Lmax = 4, 8) observables. All checks were performed on the ’test’ bin:
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Figure A.10: Measured (acceptance uncorrected) number of events as a function of the pπ+ in-
variant mass, compared to the predicted distribution computed used the fitted moments weighted
with the experimental acceptance. Log likelihood with the second parametrization method used.
a) π+p b) π−p
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Figure A.11: Comparison of helicity angles in the f0(980) mass region ( Mππ = 0.985 ± 0.01
GeV) as measured (red) and reconstructed by the fit procedure using Lmax = 4 (blue).

3.4 < E < 3.6 GeV and 0.5 < −t < 0.6 GeV2. Figure A.13 shows generated and reconstructed
moments while fig. A.14 shows the resulting (full and resonant) partial waves.

Integrating the bottom left plot in fig. A.14 in the range Mpπ = 0.98±0.04 GeV, we extracted
the f0(980) cross section from generated and reconstructed moments. We used the difference as
an estimate of the systematic error associated with the truncation. We found:
- σ = 0.15 ± 0.02 µb from generated;
- σ = 0.19 ± 0.03 µb from reconstructed using Lmax = 4 ;
- σ = 0.23 ± 0.06 µb from reconstructed using Lmax = 8 .

A.4.3 Evaluation of the truncation error on the S − wave using data

With Lmax = 4, all methods converge and we derived four sets of results that were fit to the
dispersion relations to extract the partial waves (as presented in Chap. 4). The comparison of
the results obtained with these different methods allowed us to estimate the systematic error
associated to the analysis procedure. Going to Lmax = 8, Method 1 does not converge properly
due to the noise introduced by higher waves. This can be clearly seen in Fig. A.15 where moments
extracted with the two different Lmax are shown.

These issues with the converge of Lmax = 8 fits are the reason why we have chosen to work
with Lmax = 4. In fact fits with Lmax = 4 are stable and converging for all the four methods
listed above allowing us to estimate the systematic error associated with the specific analysis
procedure.

With , Lmax = 8 Method 2 shows larger errors and some scattered bins, see Fig. A.16, but
still a reasonable convergence allowing a direct comparison to results obtained with Lmax = 4.

To estimate the effect of the Lmax truncation in the final cross section, for a specific energy
and −t bin, we fitted moments extracted with Lmax = 8 (see Fig. A.17) derived the partial
waves, total and direct production, (see Fig. A.18) and compare to the results obtained by using
Lmax = 4.
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Figure A.12: Comparison of Mpπ in three different Mππ mass regions (Mππ = 0.475 ± 0.01,
Mππ = 0.775±0.01,Mππ = 1.295±0.01) as measured (red) and reconstructed by the fit procedure
using Lmax = 4 (blue).
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Figure A.13: Moments from generated and reconstructed pseudo-data for 3.4 < E < 3.6, 0.5 <
−t < 0.6 bin. Red: generated; green:reconstructed with Lmax = 2; black: reconstructed with
Lmax = 4; blue: reconstructed with Lmax = 8.

Figure A.14: Partial waves from generated and reconstructed pseudo-data for 3.4 < E < 3.6,
0.5 < −t < 0.6 bin. Red: as obtained by the generated events; black: as obtained by recon-
structed events (Lmax = 4) green: as obtained by reconstructed events (Lmax = 8). Upper plot:
total waves; bottom: resonant part.
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Figure A.15: Acceptance corrected moments (−1)µ〈Ỹλµ〉 for 3.4 < E < 3.6, 0.5 < −t < 0.6
bin extracted with Method 1 with different Lmax. The lowest moment 〈Y00〉 corresponds to
the absolute cross section. Since these are the maximum L entering in the amplitudes, they
correspond to Lmax = 4 and 8 in Method 2.

Figure A.16: Acceptance corrected moments (−1)µ〈Ỹλµ〉 for 3.4 < E < 3.6, 0.5 < −t < 0.6
bin extracted with Method 2 with different Lmax. The lowest moment 〈Y00〉 corresponds to the
absolute cross section.
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Figure A.17: Comparison of acceptance corrected moments (−1)µ〈Ỹλµ〉 for 3.4 < E < 3.6,
0.5 < −t < 0.6 bin extracted with Method 2 with Lmax = 4, 8 and results of the fit for Lmax = 8
moments.

Figure A.18: Comparison of partial waves for 3.4 < E < 3.6, 0.5 < −t < 0.6 bin extracted with
Lmax = 4, 8. Upper panel: total partial wave; bottom panel: direct production
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Integrating the S-wave (resonant part only) in the f0(980) region, we found:
- σ = 0.18 ± 0.04 µb using Lmax = 8;
- σ = 0.15 ± 0.03 µb using Lmax = 4;
As expected, the two values are compatible at 1σ and the result obtained with Lmax = 8 has
a bigger error. From here we conclude that the observables of interst can be reliably extracted
with Lmax = 4 and that there is no evidence of significant effect (within quoted error bars) due
to the truncation.

A.4.4 Conclusions

In summary, results obtained using Lmax = 8, when available, are consistent with the results
obtained with Lmax = 4 but in general appear to be less stable and reliable due to the fit
non converging or to noise introduced by the higher waves. The conservative estimate of the
systematic error associated to the truncation at Lmax = 4 was then computed comparing the
results obtained by the Monte Carlo simulations (Par. A.4.2). Generated and reconstructed
events were compared obtaining:

|(Gen − RecLmax=4)|
2|̇(Gen + RecLmax=4)|

∼ 25% (A.1)

This error was summed in quadrature to all the extracted cross sections to take into account
the effect of the truncation in Lmax.

A.4.5 Other systematic checks

Monte Carlo simulations were also used to perform some more systematic studies in particular
we checked the moment extraction procedure and the acceptance of CLAS as a possible source
of the signal associated to the f0(980).

Moment extraction using MC

The same event generator described in Chap. 2.1, used to extract the ρ photoproduction cross
section was also used to check the moment extraction. This MC is based on a total different
technique, not using a partial wave expansion to generate events but simply summing incoher-
ently many different channels with the same final state. In particular angular distributions of
various processes are based on interpolation of available data, without an explicit limitation on
the numeber of waves included. Therefore, using this MC we expect to have a real independent
check on our capability of extracting moments and see the effect of Lmax truncation. Figure A.19
shows the comparison between moments calculated directly form the generated events (in black)
and moments obtained by using Method 2b Lmax = 2 (in red) and Lmax = 4 (in green). The fit
reproduces the data up to Mππ ∼1.1 GeV and and in particular Y10 shows a clear improvement
going from Lmax = 2 to Lmax = 4. This is another confirmation that, even in this case, where
the comparison to the real data is only qualitative, moments can be reproduced by using a
limited number of terms. Noise in moments extracted with Lmax = 4 is mainly due to the poor
statistics used for this test. This MC does not include the f0(980) production channel.

Effect of CLAS acceptance on Mππ mass

One possible issue is related to the distortion introduced by the CLAS acceptance to the Mππ

that could mimic a resonance peak. We addressed this problem using Monte Carlo simulations
based on the partial wave analysis derived by our own analysis described in Par. A.4.2 of this
Appendix with Lmax = 4. Events were generated after removing by hand the f0(980) signal, and
then processing the pseudo-data with the usual analysis chain (Method 2b with Lmax = 2, 4).
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Figure A.19: Moments (−1)µ〈Ỹλµ〉 for 3.4 < E < 3.6, 0.5 < −t < 0.6 bin computed from pseudo-
data obtained by the Monte Carlo program described in Chap. 2.1: moments were computed
from generated events (black) and reconstructed events using Lmax = 2 (red) and Lmax = 4
(green).

Results are shown in fig. A.20: when events are generated without the f0(980), no sharp structure
appears due to the CLAS acceptance effect. From here we conclude that, the peak around the
f0(980) mass is not created by the CLAS acceptance.

Effect of Mππ mass binning in the moment extraction

To check the effect of Mππ mass binning we calculated moments using a finer binning (5 MeV
in place of standard 10 MeV) and shifting the binning by half the original bin size. As shown in
fig A.21, the behavior of moments is unchanged as well as the structures present around M=980
MeV.

A.5 Systematic studies on the truncation of PWA expansion
and waves parametrization

A.5.1 Truncation of partial wave expansion of moments

If data gave direct access to ππ amplitudes these would be the only undetermined parameters in
the theoretical parametrization. In reality, however, it is the moments and not individual partial
waves that can be unambiguously extracted from the data (assuming acceptance corrections
are under control). A given ππ moment involves an infinite number of ππ partial waves. For
example

〈Y00〉 = |S|2 +
∑

m=0±1

|Pm|2 +
∑

m=0,±1,2

|Dm|2 + · · ·
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Figure A.20: Moments extracted from generated pseudo-data with no f0(980) (in red) compared
to moments obtained by reconstructed events using Method 2b with Lmax = 2 (red) and Lmax = 4
(green). (moments from reconstructed MC events using L max =4 and 2) Moments (−1)µ〈Ỹλµ〉
for 3.4 < E < 3.6, 0.5 < −t < 0.6 bin computed from pseudo-data obtained by the Monte Carlo
program described in Chap. 2.1: moments were computed from generated events (black) and
reconstructed events using Lmax = 2 (black) and Lmax = 4 (green).
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Figure A.21: Comparison of moments extracted with a finer binning (5 MeV) respect to the
standard (10 MeV). The bottom figure shows a zoom in the f0(980) region.
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〈Y10〉 = SP ∗
0 + S∗P0 +

√

3

5
P−D∗ − · · · (A.2)

It is clear that any analysis would require a truncation in the number of terms on the right
hand side. Nevertheless it should also be obvious that certain features of ππ amplitudes can be
reliability extracted even when such truncation is made while other are not. For example the
f0 has a rapid mass dependence, and in 〈Y10〉 appears in two terms only, through interference
with the P wave. All other terms in 〈Y10〉 add up to a smooth background near the f0 mass.
Similarly, near the ρ (which is much broader but also much stronger) it is the S and D waves
only that contribute via interference with the P -wave and produce the ρ-like variation in the
moment with all other terms contributing to a background. On the other hand the extraction of
other states, as the σ meson, due to the large width may be strongly contaminated by truncation
and can not be extracted with this procedure.
In summary the truncation in the number of partial waves used to describe moments is expected
to be a good approximation when describing narrow ππ resonances which contribute to individual
partial waves. The remaining background can be described with a smooth function.

A.5.2 Extraction of the resonant part of waves

Fitting experimental moments we extracted partial waves using the parametrization described
in Appendix C. Using dispersion relations, amplitudes can be written as function of s = M2

ππ

for each L-wave, as:

a(s) =
1

2
[I + S(s)]aL(s) −

1

π
D−1(s)PV

∫

sth

ds′
N(s′)ρ(s′)aL(s′)

s′ − s
(A.3)

where:
- I and S are matrix in multi-channel space (π− π, K −K); - N(s) and D(s) can be written in
terms of the scattering matrix of π−π scattering, chosen to reproduce the known phase shift and
inelasticities; - aL(s) represents our ignorance about the production process. Since discontinuities
are taken into account by functions N and D, aL(s), does not have singularities and can be
expanded in a polynomial. The polynomial parameters (see Appendix. C of the analysis note
for details) are the PWA fit parameters. The imaginary part of the integral in the equation
above, represents the production of long-lived two-mesons (on-shell) meson pairs corresponding
to the non-resonant part of the scattering process. The Real part of the same integral represents
the direct resonant production that, in absence of the on-shell part, would lead to the typical
Breit-Wigner shape. This is what we used to derive the resonance (in particular f0(980)) cross
sections. It should be noticed that parameters defining the amplitude above, are extracted fitting
the whole Mππ spectrum using constraints from hadronic data. The resonant and non-resonant
part of the amplitudes are then computed from the fitted parameters. Errors on the parameters
are given by MINUIT and propagated to the final amplitude. To propagate the systematic error
associated to the experimental moment extraction, the fit was performed independently on the
4 sets of experimental moments described in Par.4.3 of this note. Figures A.22 and A.23 show
the individual fit results (top panel), and the combination of the four (bottom) for the whole
and resonant part of the S − wave.

The four results were combined together as average. The errors were computed combining
in quadrature the following contributions:
- the statistical error as it comes from MINUIT;
- the systematic error associated to the fit procedure estimated as variance of the 4 sets of results
described above;
- error from photon flux normalization and data analysis estimated to be of the order of 10%.
The dominant contribution to the final error comes from the systematic difference between the
four sets of fits. The relation between errors on the full and resonant part of the wave is not
trivially related to the parametrization of the amplitude.
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Figure A.22: The whole S−wave obtained by fitting moments extracted with the four methods
described in the text. Top panel: fit results obtained using Method 1 (black), Method 2a (red),
Method 2b (green) and Method 2c (blue). Bottom panel: combination of the four fit results.

Final state interaction

The S − wave parametrization used in the fit does include effects beyond ππ scattering, e.g.
production of baryon resonances or meson-baryon rescattering. Each partial wave amplitude,
(S, or P, or D etc.) for given momentum transfer −t and photon energy Eγ is a function of a
single variable – the ππ invariant mass, Mππ . It is important to realize that a single partial
wave amplitude ”knows” about all hadronic processes (including baryon resonance production).
In the analysis of partial waves one possible approach, would be to build a model of various
hadronic processes, project onto a particular ππ partial wave and determine any free parameters
in the hadronic model by fitting the ππ moments. In our analysis, however we have taken a route
that relies less on the specific model for hadronic process. Our approach can be summarized as
follows. Independently on the specifics of the underlying hadronic processes, the Mππ dependence
of partial waves is constrained by analyticity and Cauchy theorem leading to a relation between
amplitude and its singularities. The singularities are determined by the known ππ phase shifts
and unknown functions of Mππ that, for example, contain information about ππ production from
various hadronic sources. Another important observation is that these unknown functions have
no singularities for physical values of Mππ (where data exists) and thus can be parametrized as
regular (e.g polynomial) functions. Parameters of these polynomials are determined by fitting
moments rather than being specified by any given model.

A.5.3 Conclusions

In summary:

1 The fit parameters in partial waves do account for all hadronic processes that contribute
to a given partial wave. Since the functional form is constrained by analyticity the number
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Figure A.23: The resonant part of the S − wave obtained by fitting moments extracted with
the four methods described in the text. Top panel: fit results obtained using Method 1 (black),
Method 2a (red), Method 2b (green) and Method 2c (blue). Bottom panel: combination of the
four fit results.
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Figure A.24: Fit of the moments when a 2nd order polynomial background has been added to
the expansion in partial waves. Experimental moments are plot in black while the fit result is
in red.

of parameters can be controlled by a number of terms in a Taylor expansion (order of
polynomial).

2 Truncation in the number of partial waves used to describe moments is expected to be a
good approximation when describing narrow ππ resonances which contribute to individual
partial waves.

We have tested these approximations by

Ad.1 varying the number of parameters in the polynomial expansion. We did fits using 4th
order polynomials and 2nd order polynomials.

Ad.2 including incoherent (per Eq. A.2) polynomials in Mππ to describe the effect of eliminated
terms in the truncation of the moments.

Figure A.24 shows the results of fit of the moments with polynomial background included.
Figure A.25 shows the separated contribution of the polynomial background (in green) and
the remaining part (in black). The sum of the two contributions gives the fit result shown in
fig. A.24. From this check we conclude that background contribution is small, smooth and does
not affect the quality of the fit. Figure A.26 shows the extracted waves when the polynomial
background is included in the fit (in black) and the contribution of the waves after background
subtraction.

The comparison, for both the full wave and the resonant part only, shows that the P −wave
and the S−wave in the f0(980) region are only slightly affected by the inclusion of this additional
background. On the contrary, the low mass S − wave, corresponding to the σ(600) region, and
the D −wave, corresponding to the f2(1270) region, shows a significant variation and therefore
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Figure A.25: Separated contribution of the background (green) and partial wave expansion
(black). Experimental moments are plot in red.
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Figure A.26: Extracted S,P,D − waves with the polynomial background included (black) and
without (red). In the top panel, the whole waves are shown while in the bottom, only the
resonant part.
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a more complete analysis should be perform to extract reliable information in these mass ranges.

From the above systematic check we estimated an error on the background subtraction of
20% on the f0 cross section that will be added in quadrature to the final quoted error.
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Appendix B

Higher moments

The explicit expressions for the moments in terms of partial waves are given by

〈Y00〉 = N
[

|S|2 + |P−|2 + |P0|2 + |P+|2 + |D−|2

+|D0|2 + |D+|2 + |F−|2 + |F0|2 + |F+|2
]

(B.1)
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Appendix C

Two-body partial wave amplitudes

Strong interaction ππ amplitude play a central role in determining ππ photoproduction am-
plitudes. Here we summarize some basic properties of the ππ amplitudes and give specific
parametrization for the D(s) and N(s) functions for each partial wave. For a specific partial
wave determined by the total isospin-I and angular momentum-l the scattering operator acts in
the particle channel space α, β = ππ,KK̄ and it is given by (including only two-body channels)

Sα,β = δα,β − 2itα,β(s)ρβ(s) (C.1)

where tα,β = tl,I(s)α,β is the scattering amplitude between channels α, β normalized such that

dσI

dt
=

1

64πsk2
α
|
∑

l

tl,I(s)(2l + 1)Pl(cos θ)|2 (C.2)

and ρβ(s) = kβ/8π
√

s = σβ(s)/16π, σβ =
√

1 − 4m2
β/s is the phase space in the channel β.

Unitarity, SS† = 1 implies (for each l, I),

Im tαβ(s) =
1

2i

[

tαβ(s) − t†αβ(s)
]

= −
∑

γ

tαγ(s)ργ(s)t
†
γβ(s) (C.3)

or

Im t−1
αβ(s) =

1

2i

[

t−1(s)αβ − t−1∗
αβ (s)

]

= ρα(s)δαβ (C.4)

When amplitudes are analytically continued to complex s-plane, the physical amplitudes are
defined as the limit aphys(s) = a(s + iε) ≡ a(s+). Reflection positivity of analytical functions,
a(s∗) = a∗(s) than relates the phase space factor to the discontinuity in the analytical functions
representing scattering amplitudes across the right hand cut

t−1(s) − t−1∗(s) = t−1(s + iε) − t−1(s − iε) ≡ t−1(s+) − t−1(s−) = 2iρ(s) (C.5)

It is convenient to separate the right hand from left hand singularities by introducing a
parametrization (for each l, I),

tαβ(s) = [D−1(s)N(s)]αβ (C.6)

where D, (N) are matrices in the channel space that have only right (left) hand cut singularity.
From unitarity it than follows,

N−1(s+)D(s+) − N−1(s−)D(s−) = 2iρ (C.7)

Since N has no cuts for positive s, N(s+) = N(s−) = N(s) and

D(s+) − D(s−) = 2iN(s)ρ(s) = 2iD(s+)t(s)ρ(s) = D(s+) [1 − S(s)] (C.8)
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which enables to relate the discontinuity of the denominator function D across the right hand
cut to the S-matrix,

S(s) = D−1(s+)D(s−) (C.9)

Since D(s) has only the right hand cut, Cauchy theorem leads to a dispersion relation

D(s) =
1

2πi

∫

sth

ds′
D(s′+) − D(s′−)

s′ − s
=

1

π

∫

sth

ds′
D(s′)t(s′)ρ(s′)

s′ − s
=

1

π

∫

sth

ds′
N(s′)ρ(s′)

s′ − s
(C.10)

possibly with subtractions and it is understood that the functions in numerator under the integral
are to be taken on the upper lip of the positive s′ line, i.e. with s′ + iε . The lower limit of
integration is given by the starting point of the right hand cut (e.g. sth = 4m2

π for ππ ) The role
of subtractions is to remove high-s′ component of the integral. This is necessary if the S-matrix
elements do not decrease fast enough with energy which is the case in diffractive scattering.
However even if the integral is finite subtractions are effective in improving convergence. Finally
in theoretical based on low-energy expansion motivated by effective field theory methods the
function N is known for low s′ only and subtractions are introduced to remove the region of
integration where N is not known. For example with one subtraction

D(s) = D(s0) +
s − s0

π

∫

sth

ds′
D(s′)t(s′)ρ(s′)

(s′ − s)(s′ − s0)
=

s − s0

π

∫

sth

ds′
N(s′)ρ(s′)

(s′ − s)(s′ − s0)
(C.11)

Since D(s0) is a constant it can be absorbed by re-scaling D and N and it is allows possible to
write

D(s) = 1 +
s − s0

π

∫

sth

ds′
D(s′)t(s′)ρ(s′)

(s′ − s)(s′ − s0)
= 1 +

s − s0

π

∫

sth

ds′
N(s′)ρ(s′)

(s′ − s)(s′ − s0)
(C.12)

The crucial point here is that this expresses D entirely in terms of measurable quantities deter-
mined by phase shifts and inelasticities via the S matrix. The solution to Eq. C.8 can found
from Eq. C.9

ln D(s+) − ln D(s−) = − lnS(s) (C.13)

Defining F (s) ≡ ln D(s) which has the same cuts as D one can write a dispersion relation,

F (s) = −
1

2πi

∫

sth

ds′
ln S(s′)

s − s′
(C.14)

(possibly with subtractions), and therefore obtain an explicit solution for D in terms of S,

D(s) = exp
(

−
1

2πi

∫

sth

ds′
ln S(s′)

s − s′
.
)

(C.15)

If one subtraction is used, with D given by Eq. C.12 we have instead

F (s) = F (s0) −
(s − s0)

2πi

∫

sth

ds′
lnS(s′)

(s′ − s)(s′ − s0)

D(s) = D(s0) exp
(

−
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2πi
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sth

ds′
ln S(s′)

(s′ − s)(s′ − s0)

)

(C.16)

with D(s0) = 1 according to the normalization in Eq. C.12. In summary, the discontinuity
across the right hand cut in the partial waves can be determined from data, i.e phase shifts
and inelasticities. The complete partial wave amplitude t(s) = tl,I(s) involves also the function
N(s) = N l,I(s) which can can in principle be determined, using Couchy relations, through its
discontinuity on the left hand cut. This in general is related to physical thresholds in crossed
channel reactions. Fr example in the case of ππ → ππ amplitudes cross channels involve the same
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amplitudes and cuts of N can also be related to the same phase shifts and inelasticities albeit
involving all partial waves. This is leads to the so called Roy equations. In practice one does
not know the S-matrix elements for all partial waves and all energies and the Omnes integrals
(Eq. C.15, C.16) are often computed using an analytical approximations/parametrization of the
S-matrix elements.

In our analysis we will use a parametrization from for D that fits the ππ data to constrain
ππ photo-production amplitudes. In particular we will employ the parametrization of Oset et
al. [7] which leads to simple analytical expressions. In Appendix B is reported the explicit
parametrization of the ππ scattering and the photo-production amplitudes in the isospin basis
as a function of s.

C.1 Parametrization of individual ππ amplitudes

The parametrization of the low energy ππ amplitudes is often made based on the low energy
expansion controlled by chiral symmetry. In particular in Ref. [?], lowest order chiral langrangian
was used to construct the function N(s) representing effectively the ππ potential,

N(s) = A + Bs + Cs4 + · · · , (C.17)

where A,B,C, · · · are s-independent matrix in the channel space, i.e A = Aαβ with α = 1
corresponding to ππ α = 2 to KK̄ which are sufficient for energies below 1.4 GeV. As discussed
earlier subtractions can be used to rome the integration region for large energies, where N is not
known. Below we discuss the individual partial waves

C.1.1 (l, I) = (0, 0)

In this case N , and D are 2 × 2 matrices and C and higher order terms in the expansion of N
were ignored . With N(s) being a first order polynomial in s subtractions are introduces in a
somewhat different albeit equivalent fashion to that described in Sec. C. The D -matrix given
by Eq. C.10,

D(s±) = 1 + I(s±) (C.18)

with

I(s±) ≡
1

π

∫

sth

ds′
N(s′)ρ(s′)

s′ − s±
− 1

= −1 +
1

π

∫

sth

ds′
B(s′ − s)ρ(s′)

s′ − s
+ (A + Bs)

1

π

∫

sth

ds′
ρ(s′)

s′ − s±

≡ a(s0) + b(s0)s + N(s)G(s, s0) ± iN(s)ρ(s) (C.19)

where G is the Chew-Mandelstam (matrix) function given by

G(s, s0) =
(s − s0)

π
P .V .

∫

sth

ds′
ρ(s′)

(s′ − s)(s′ − s0)

= −
1

(4π)2


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

√
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s ln
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√

1+
4sth

s

1−
√
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s
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√
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


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√
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
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√
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s ln

√
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s

+1
√

1− 4sth
s

−1
for 0 > s

− (s → s0) (C.20)
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Figure C.1: ππ components of the magnitude of the inverse of the denominator function for
isoscalar S wave.

and a(s0) and b(s0) are constants (matrix) given by

a(s0) = −1 +
B

π
P.V.

∫

sth

ds′ρ(s′) +
A

π
P.V.

∫

sth

ds′
ρ(s′)

s′ − s0

b(s0) =
B

π
P.V.

∫

sth

ds′
ρ(s′)

s′ − s0
(C.21)

These constants are infinite thus two subtractions are needed to make D finite, δa and δbs As
discussed earlier, the s-independent term a(s0)+δa in the dispersion equation for D, is irrelevant
and can be set to one by re-scaling D and N . The other constant matrix b(s0) + δb can be used
as a free parameter to be fitted to data. This leaves two (without counting the numerical A,B
matrices) parameters, the matrix b(s0) + δb and s0 to be determined from data. In the model
of Oset et al. a somewhat different path was taken. For the isoscalar S- wave the numerical
matrices A and B are fixed from isoscalar S-wave projection of the amplitudes calculated from
the chiral Lagrangian,

A =
1

2f2
π

(

m2
π 0

0 0

)

= O(1), B =
1

2f2
π

(

−2 −
√

3
2

−
√

3
2 −3

2

)

= O(102 GeV−2) (C.22)

and the matrices a(s0) + δa and b(s0) + δb were fitted to the data at a fixed value of s0 chosen
as s0m2

ρ. Furthermore a constraint between a(s0) + δ and b(s0) + δb was imposed so that

a(s0) + δa + [b(s0) + δb]s = const. × (A + Bs) + O(mπ/mK) (C.23)

with the correction term originating from a difference in thresholds in the ππ and KK̄ channels.
From fitting to the data one finds,

a(m2
ρ) =

10−2

2f2
π

(

1.27m2
π 0

0 0

)

= O(10−2)A,
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Figure C.2: ππ scalar-isoscalar phase shift

b(m2
ρ) =

10−2

2f2
π

(

−2 × 1.27 −
√

3
2 × 0.73

−
√

3
2 × 1.27 −3

2 × 0.73

)

= O(10−2)B (C.24)

The modulus of D−1(s+) is shown in Fig. C.1 and the ππ phase shift given in terms of the S
matrix by

S =

[

ηe2iδππ i(1 − η2)1/2ei(δππ+δKK̄)

i(1 − η2)1/2ei(δππ+δKK̄) ηe2iδKK̄

]

(C.25)

is compared to data in Fig. C.2 One might argue that the model of Oset et al. is somewhat
ad hoc, for example one could fix ( a and fit b as discussed earlier) It is important to realize
that as far as determining D any parametrization that reproduces the cross section is equally
acceptable.

C.1.2 (l, I) = (1, 1)

It is well known that to represent the main feature – the ρ meson of the isovector P -wave it is
necessary to consider terms at least up to order s2 in the expansion in Eq. C.17,

N(s) = A + Bs + Cs2 (C.26)

Furthermore the ρ primality to the ππ channel and is sufficient to consider N and D as single
functions. To implement this in the dispersion relation for D requires two subtractions

D(s±) = a0 + b0s + c0s
2 + N(s)G(s, s0) ± iN(s)ρ(s) (C.27)

where

a0 =
A

π

∫

ds′
ρ(s′)

s − s0
+

B

π

∫

ds′ρ(s′) +
C

π

∫

ds′s′ρ(s′)

b0 =
B

π

∫

ds′
ρ(s′)

s − s0
+

C

π

∫

ds′ρ(s′)
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Figure C.3: ππ vector-isovector phase shift

c0 =
C

π

∫

ds′
ρ(s′)

s − s0

(C.28)

Again it is convenient to normalize D so that in the chiral limit at low energies (A → 0,
s → 0), D = 1 which amounts to resealing by a0. Fitting to P - wave data gives

A = 1.57, B = −22.20 GeV−2, C = 4.47 GeV−4

a0 = 1.0, b0 = −1.68 GeV−2, c0 = −1.79 × 10−3 GeV−4 (C.29)

We note, that just like in S-wave case, A = O(1) i.e consistent with being of the order of m2
π/f

2
π .

B is of the order O(10 − 100) GeV2 consistent with being of the order of 1/f2
π . Finally C is

consistent with being of the order of 1/f2
πm2

ρ expected for interaction originating from physics
at the QCD scale, Λ ∼ mρ . The comparison of the P -wave phase shift with the one obtained
from the D function given above,

δ(1,1)(s) =
1

2i
ln

D(s−)

D(s+)
(C.30)

is shown in Fig. C.3.

C.1.3 (l, I) = (2, 0)

The isoscalar D-wave is dominated by the f2 resonance and will be parametrized using the BW
approximation,

D(s±) = 1 + b0s + c0s
2 + d0s

3 + N(s)G(s, s,0 ) ± iN(s)ρ(s), N(s) = D(s − 4m2
π)

2 (C.31)
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Figure C.4: Magnitude of the inverse of the denominator function for isovector P wave.

with D = −52.74 GeV−4 = O(1/f2
πΛ

2),

b0 = 2.00 GeV−2, c0 = 2.83 GeV−4, d0 = −3.61 GeV−6 (C.32)

The plot of the phase shift is given in Fig. C.5

C.1.4 (l, I) = (0, 2)

The D function for the scalar-isotensor is parametrized as using one-channel chiral amplitude –
the same as used to generate S -wave isoscalar but now projected onto isotensor

N(s) = −
m2

π

f2
π

+
s

2f2
π

= A + Bs (C.33)

A = −2.37, B = 66.06 GeV−2 = O(1/f2
π)

D(s±) = 1 + a0 + b0s + N(s)G(s, s0) ± iN(s)ρ(s) (C.34)

with s0 = m2
ρ, a0 = −7.93 × 10−2, b0 = 2.21 GeV−2 = O(1/Λ2) The phase shift is shown in

Fig. C.7

C.1.5 Higher partial waves

In the analysis of the photoproduction data we will also use F waves. The non-trivial structure
is due to the ρ3(1690) (isovector) which is outside of the ππ mass considered. Thus we set set
D = 1.

C.2 Photo-production amplitudes

In Sec. 4.2.1 we derived the general, dispersion relation representation for partial waves of given
spin and isospin which are valid independently for each projection of nucleon spin. Below give
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Figure C.5: ππ tensor-isoscalar phase shift
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Figure C.6: Magnitude of the inverse of the denominator function for isoscalar D wave.
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Figure C.7: ππ scalar-isotensor phase shift
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Figure C.8: Magnitude of the inverse of the denominator function for isotensor S wave.



98 APPENDIX C. TWO-BODY PARTIAL WAVE AMPLITUDES

specific formulas for individual partial waves which adopt specific parametrization of two-body
amplitudes discussed above. In the following we use label α = 1, 2 to denote the ππ,KK̄
channels, respectively. To maintain consistency with the chiral expansion used to constrain the
N function in the ππ amplitudes, we expand the production amplitudes ãL(s) in powers of s up
to order s2.

C.2.1 Isospin relations

The data corresponds to the π+π− final state while the amplitudes discussed so far have well
defined isospin. The correct partial waves to be compared to that data for given angular mo-
mentum and nucleon helicity are given by, for even partial waves:

al,m,i =
1√
3
aI=0

l,m,i +
1√
6
aI=2

l,m,i (C.35)

and for odd partial waves:

al,m,i =
1√
2
aI=1

l,m,i (C.36)

C.2.2 (l,I) = (0,0)

With N and D corresponding the the scalar-isoscalar partial wave and aL(s) written as a second
order polynomial the dispersion relation in Eq. 4.22 needs four subtractions and can be written
as

a(s) = ãL(s) −
D−1(s)

π

∫

ds′
(A + Bs′)ρ(s′)(A + Bs′ + Ds′2)

s′ − s

= D−1(s)
[

α0 + β0s + γ0s
2 + δ0s

3
]

+
[

ãL(s) − D−1(s)N(s)G(s, s0)a
L(s) − iD−1(s)N(s)ρ(s)ãL(s)

]

= D−1(s)
[

α0 + β0s + γ0s
2 + δ0s

3
]

+
[

1

2
(S(s) + 1) − t(s)G(s, s0)

]

ãL(s)

= D−1(s)
[

α0 + β0s + γ0s
2 + δ0s

3
]

+
[

1

2
(1 + S(s)) +

i

2
(1 − S(s))ρ−1(s)G(s, s0)

]

ãL(s) (C.37)

with
ãL(s) = A + Bs + Cs2 (C.38)

and S and t being the S-matrix and t-matrix for the scalar-isoscalar case.
The amplitudes a, ãL are vectors in the channel space, a = aα, with α = 1 corresponding

to the ππ and α = 2 to the KK̄ channel,respectively. We are interested in the α = 1 element
which is explicitly given by

a(0,0)
1 (s) = D−1

11 (s)
[

α0,1 + β0,1s + γ0,1s
2 + δ0,1s

3
]

+ D−1
12 (s)

[

α0,2 + β0,2s + γ0,2s
2 + δ0,2s

3
]

+
[

1

2
(1 + S11(s)) − t11(s)G1(s, s0)

]

(A1 + B1s + C1s
2)

+
[

1

2
S12(s) − t12(s)G2(s, s0)

]

(A2 + B2s + C2s
2)

= D−1
11 (s)

[

α0,1 + β0,1s + γ0,1s
2 + δ0,1s

3
]

+ D−1
12 (s)

[

α0,2 + β0,2s + γ0,2s
2 + δ0,2s

3
]

+
[

1

2
(1 + S11(s)) +

i

2
(1 − S(s))11ρ

−1
1 (s)G1(s, s0)

]

(A1 + B1s + C1s
2)

+
[

1

2
S12(s) −

i

2
S12(s)ρ

−1
2 (s)G2(s, s0)

]

(A2 + B2s + C2s
2) (C.39)
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The 14 complex parameters, α′s, β′s, γ′, δ′s and A1,2,B1,2, C1,2 are 2× 2 are to be determined by
the fit, one set for each nucleon spin projection. Leading to a total of 56 real parameters for this
wave. Note half of them represent ππ production through and intermediate ππ (subscript-1)
and half through an intermediate KK̄ (subscript-2) state.

C.2.3 (l,I) = (1,1)

The production amplitude now has a structure

ãL(s) =
(

A + Bs + Cs2
)

(C.40)

and [k]l =
√

1 − 4m2
π/s. In this case N is a second order polynomial thus we need five subtrac-

tions

a(1,1)(s) = D−1(s)
(

α0 + β0s + γ0s
2 + δ0s

3 + ε0s
4
)

+
[

1

2
(1 + S(s)) +

i

2ρ(s)
(1 − S(s))G(s, s0)

]

√

1 −
4m2

π

s
(A + Bs + Cs2) (C.41)

There a 8 complex parameters in this amplitude for each nucleon helicity state and each one of
the l = 1, m = ±1, 0 helicity projection of the di-pion system leading to 96 real fit parameters.

C.2.4 (l,I) = (2,0)

The production amplitude now has a structure

ãL(s) =
(

A + Bs + Cs2
)

(C.42)

[k]2 = (1 − 4m2
π/s). In this case N is a second order polynomial thus we again need five

subtractions

a(2,0)(s) = D−1(s)
(

α0 + β0s + γ0s
2 + δ0s

3 + ε0s
4
)

+
[

1

2
(1 + S(s)) +

i

2ρ(s)
(1 − S(s))G(s, s0)

]

(

1 −
4m2

π

s

)

(A + Bs + Cs2)(C.43)

leading to 96 (8 complex parameters for each one of the two nucleon helicities and m = ±1, 0
helicity projections in the di-pion system) real fit parameters.

C.2.5 (l,I) = (0,2)

The production amplitude now has a structure

ãL(s) =
(

A + Bs + Cs2
)

(C.44)

In this case N is a first polynomial thus we again need four subtractions

a(0,2)(s) = D−1(s)
(

α0 + β0s + γ0s
2 + δ0s

3
)

+
[

1

2
(1 + S(s)) +

i

2ρ(s)
(1 − S(s))G(s, s0)

]

(

A + Bs + Cs2
)

(C.45)

leading to 28 fit parameters.
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C.2.6 Higher partial wave

For completeness we consider (l, I) = (2, 2) and (3, 1) partial waves, assuming no ππ interactions
in these channels. The amplitudes are therefore given by the aL terms alone which we expand
o second order

a(2,2) =

(

1 −
4m2

π

s

)

(

A + Bs + Cs2
)

(C.46)

a(3,1) =

(

1 −
4m2

π

s

)3/2
(

A + Bs + Cs2
)

(C.47)

leading to 72 real fit parameters.

C.2.7 Fit parameters

So far we have introduced 348 parameters in the partial waves which describe the photopro-
duction of either ππ or KK̄ intermediate states. We have found than many of them, especially
those multiplying higher powers of the invariant mass squared, s are small, thus in the final fits
have reduced the number of terms in Eq. C.39, C.41, C.43, C.45, C.46, C.47. For (l, I) = (0, 0)
wave we kept only first order polynomial in the subtraction terms (i.e set γ = δ = 0) which
leads to 40 real parameters for this wave. For (l, I) = (1, 1) we set γ = δ = ε = 0) which reduces
the number of parameters to 60. For (l, I) = (2, 0) we eliminate γ = δ = ε = 0 leading to 60
real parameters. For (l, I) = (0, 2) we eliminate γ = δ = 0 leaving 20 real parameters. For
(l, I) = (2, 2) and (l, I) = (3, 1) which do not involve final state interactions we keep set C = and
reduce the number of parameters to 24 for each wave. The final total number of fit parameters
is 228.
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