Igor Danilkin: $\omega \rightarrow 3 \pi, \phi \rightarrow 3 \pi$ [Preliminary]

The double differential decay rate is determined by

$$
\begin{gather*}
\frac{d^{2} \Gamma}{d s d t}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M_{V}^{3}} \frac{1}{3} \sum_{\lambda}\left\|M_{\lambda}(s, t, u)\right\|^{2} \\
=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M_{V}^{3}} \frac{1}{3} P\|F(s, t, u)\|^{2}, \tag{1}\\
M_{\lambda}(s, t, u)=i \epsilon_{\mu \nu \alpha \beta} \epsilon^{\mu}(p, \lambda) p_{+}^{v} p_{-}^{\alpha} p_{0}^{\beta} F(s, t, u), P=\frac{1}{4}\left(s t u-m_{\pi}^{2}\left(M_{V}^{2}-m_{\pi}^{2}\right)^{2}\right)
\end{gather*}
$$

Below are the results for the one unknown parameter (in both methods), which is fitted to the experimental partial decay width

$$
\begin{equation*}
\Gamma_{\omega \rightarrow 3 \pi}^{\exp }=7.56 \mathrm{MeV}, \quad \Gamma_{\phi \rightarrow 3 \pi}^{\exp }=0.65 \mathrm{MeV} \tag{2}
\end{equation*}
$$

First, we plot

$$
\begin{equation*}
\frac{d \Gamma}{d s}, s \in\left[4 m_{\pi}^{2},\left(M_{V}-m_{\pi}\right)^{2}\right] \tag{3}
\end{equation*}
$$

$\omega \rightarrow 3 \pi$ (Our-solid, Bastian-dashed)

$$
\phi \rightarrow 3 \pi
$$

Transition to X and Y variables

$$
\begin{equation*}
X=\frac{t-u}{\sqrt{3} R_{V}}, \quad Y=\frac{s_{0}-s}{R_{V}}, \quad R_{V}=\frac{2}{3} M_{V}\left(M_{V}-3 M_{\pi}\right), s_{0}=\frac{1}{3}\left(3 m_{\pi}^{2}+M_{V}^{2}\right) \tag{4}
\end{equation*}
$$

Below are Dalitz plots $\frac{d^{2} \Gamma}{d s d t}$ divided by the p-wave phase space factor P.

$\omega \rightarrow 3 \pi$ (Our-top, Bastian-bottom)

$$
\phi \rightarrow 3 \pi \text { (Our-top, Bastian-bottom) }
$$

Fig. 9 Selected data from the KLOE measurement [23]. Shown is the efficiency-corrected number of counts in the respective bin, divided by the phase-space factor in Eq. (36) and normalized to 1 in the Dalitz plot center

Let us compare scattering amplitudes:

$$
\begin{equation*}
F(s, t, u)=F(s)+F(t)+F(u) \tag{5}
\end{equation*}
$$

$\omega \rightarrow 3 \pi$: (Our-solid, Bastian-dashed)

Out[84]=

$\phi \rightarrow 3 \pi$

Graphics

