Central Production of Two-Pseudoscalar Meson Systems at COMPASS

Alexander Austregesilo

PWA Meeting February 27th, 2017 Jefferson Lab, Newport News, VA

Light Scalar Mesons

Central Production

Partial-Wave Analysis

3

Interpretation

Context: Strong Interaction

Quantum ChromoDynamics (QCD)

- Degrees of freedom: quarks and gluons
- Confinement: only color-neutral objects can be observed
- Baryons $(qqq, \bar{q}\bar{q}\bar{q})$ and Mesons $(q\bar{q})$ as the relevant degrees of freedom

Context: Strong Interaction

Quantum ChromoDynamics (QCD)

- Degrees of freedom: quarks and gluons
- Confinement: only color-neutral objects can be observed
- Baryons $(qqq, \bar{q}\bar{q}\bar{q})$ and Mesons $(q\bar{q})$ as the relevant degrees of freedom
- Glueballs and other exotic hadrons predicted by many approximations

Gell-Mann's Totalitarian Principle: Everything not forbidden is compulsory!

● Super-numerous *f*₀ states not understood by constituent quark models ⇒ Mixing with Glueballs?

$p \, p ightarrow p_{\text{fast}} \, X \, p_{\text{slow}}$

- Proton beam impinging on proton target, both stay intact and are detected
- Double-Pomeron production of meson system (gluon-rich environment)
- Decay into two pseudoscalar mesons ($\pi^+\pi^-$, $\pi^0\pi^0$, K^+K^- , $\eta\eta$, ...)

A. Austregesilo (aaustreg@jlab.org) - Seminar

A. Austregesilo (aaustreg@jlab.org) - Seminar

A. Austregesilo (aaustreg@jlab.org) — Seminar

Central Production of $\pi^+\pi^-$ System

• Baryon resonances in $p_I \pi^{\pm}$ subsystems \rightarrow **Diffractive dissociation** of the beam proton as dominant process

Central Production of $\pi^+\pi^-$ System

• Baryon resonances in $p_f \pi^{\pm}$ subsystems \rightarrow Diffractive dissociation of the beam proton as dominant process

- Kinematic separation between $p_{\rm f}$ and π^{\pm}
- Separation between p_s and π^{\pm} by trigger on recoil proton p_s

Central Production of $\pi^+\pi^-$ System

- Baryon resonances in $p_{f}\pi^{\pm}$ subsystems \rightarrow **Diffractive dissociation** of the beam proton as dominant process
- Kinematic separation between $p_{\rm f}$ and π^{\pm}
- Separation between $p_{\rm s}$ and π^{\pm} by trigger on recoil proton $p_{\rm s}$
- $\rho(770)$ production \rightarrow kinematic selection cannot isolate pure DPE sample

⇒ Two-Body Partial-Wave Analysis (PWA)

Technische Universität Müncher

$X^0 \to \pi^+\pi^-$

- Assumption: collision of two space-like exchange particles
- Decay of X^0 fully described by $M(\pi^+\pi^-)$, $\cos \vartheta$ and φ

Invariant Mass of m+m System (GeV/c2)

Partial-Wave Analysis

$X^0 ightarrow \pi^+\pi^-$

- Assumption: collision of two space-like exchange particles
- Decay of X^0 fully described by $M(\pi^+\pi^-)$, $\cos \vartheta$ and φ
- Decompose into complex-valued amplitudes (spherical harmonics) with definite spin and parity

Construction of Wave-Set

Strong Interaction Conserves Parity

• Eigenstates of **reflectivity** ϵ , waves with opposite ϵ do not interfere

$$Y_{M}^{\epsilon L}(\theta,\phi) = c(M) \left[Y_{M}^{L}(\theta,\phi) - \epsilon(-1)^{m} Y_{-M}^{L}(\theta,\phi) \right], \quad M \ge 0$$

Naturality

- ϵ coincides with exchanged **naturality** η for reaction with pion beam
- For central production, natural transfers $(J^P = 0^+, 1^-, 2^+, ...)$ correspond to $\epsilon = -1$

Partial-Wave Decomposition

Expand intensity $I(\vartheta, \varphi)$ into partial-wave amplitudes in narrow mass bins (10 MeV/ c^2):

$$\mathcal{I}(artheta,arphi) = \sum_arepsilon \left| \sum_{LM} \mathcal{T}_{LM}^arepsilon \mathcal{Y}_M^{arepsilon L}(artheta,arphi)
ight|^2$$

- Complex-valued transition amplitudes T_{LM}^{ε} , no assumption on mass-dependence
- Quantum-mechanical interference between amplitudes with same |i> and |f>
- Explicit incoherent sum over the **reflectivities** ε (parity conservation)
- Significant contributions only from L = S, P, D and $M \le 1$

\Rightarrow Extended Maximum-Likelihood Fit in Mass Bins

$$I(\vartheta,\varphi) = \sum_{\varepsilon} \left| \sum_{LM} T_{LM}^{\varepsilon} Y_M^{\varepsilon L}(\vartheta,\varphi) \right|^2$$

Maximize likelihood function

$$\ln L = \sum_{i=1}^{N} \ln I(\vartheta_i, \varphi_i) - \int d\Omega I(\vartheta, \varphi) \eta(\vartheta, \varphi)$$

by choosing *T*^ε_{LM} such that the intensity fits the observed *N* events
 Normalisation integral evaluated by a phase-space Monte Carlo sample
 with the acceptance η(ϑ, φ)

Evaluation of the Fit Quality

 $I(\vartheta,\varphi) = \sum_{\varepsilon} \left| \sum_{LM} T_{LM}^{\varepsilon} Y_{M}^{\varepsilon L}(\vartheta,\varphi) \right|^{\prime}$

Ambiguities in the $\pi^+\pi^-$ System

Intensity distributions for 30 fit attempts with random starting values

пп

Technische Universität München

Ambiguities in the $\pi^+\pi^-$ System

Unique decomposition into moments

- Real (left) and imaginary (right) part of polynomial roots
- Well separated, imaginary parts do not cross the real axis

 \Rightarrow Solutions can be uniquely identified and linked from mass bin to mass bin

Ambiguities in the $\pi^+\pi^-$ System

Intensity distributions for 8 solutions computed with the results of one single fit

пп

Technische Universität München

A. Austregesilo (aaustreg@jlab.org) - Seminar

$\Re \pi\pi$ System: Physical Solution

$$\pi^+\pi^-$$

$3 \pi \pi$ System: Physical Solution

 $\pi^+\pi^-$

 $\pi^{0}\pi^{0}$

A. Austregesilo (aaustreg@jlab.org) - Seminar

Ambiguities in the $\pi\pi$ Systems

$\pi^+\pi^-$ System

- 8 different solutions can be calculated analytically from the result of one fit
- Differentiation requires additional input (e.g. behavior at threshold, physics content)

$\pi^0\pi^0$ System

- Identical particles, only even waves allowed
- Reduces number of ambiguities to 2

Combination of $\pi\pi$ Systems

- Consistent picture of the reaction
- Measured with different parts of experimental setup
- $\rho(770)$ signal cannot be described by this model, different production mechanism
- Interpretation with mass dependent parameterization

Model-Dependent Parameterization

Resonance: Relativistic Breit-Wigner Function

Non-Resonant Contribution

Phase-space with exponential damping (phenomenological)

Sum with complex-valued coefficient (strength + phase) for each component

Technische Universität Müncher

Unitarity Constraints

- Watson theorem relates phase of prod. processes
- M solution from Au, Morgan, Pennington Phys. Rev. D 35 (1987) 1633
- ππ ampl. vanishes near threshold (Adler zero)

Unitarity Constraints

- Watson theorem relates phase of prod. processes
- M solution from Au, Morgan, Pennington Phys. Rev. D 35 (1987) 1633
- $\pi\pi$ ampl. vanishes near threshold (Adler zero)

$$\mathbb{T}_{\mathsf{red}} = \frac{\mathbb{T}}{s - s_0}$$

Unitarity Constraints

- Watson theorem relates phase of prod. processes
- M solution from Au, Morgan, Pennington Phys. Rev. D 35 (1987) 1633
- ππ ampl. vanishes near threshold (Adler zero)

$$\mathbb{T}_{\mathsf{red}} = \frac{\mathbb{T}}{s - s_0}$$

- Constrain masses below 1 GeV/c with $\pi\pi$ scattering data
- First fit of S-wave amplitude with interference to D-wave
- Interpretation with mass dependent parameterization

Fit to the K^+K^- System

- Similar partial-wave analysis to π⁺π⁻-system
- Odd waves do not play a significant role above the $\phi(1020)$ -mass \Rightarrow Reduction of ambiguities

Mass-Dependence of K^+K^-

$f_2(1270)$ $f_{2}^{\prime}(1525)$

Invariant Mass of K+K (GeV/c2)

Distinguishes resonances from non-resonant contribution

COMPASS is a unique experiment to study Light Mesons in Central Production

Large samples of precision data for many final states

• Novel analysis schemes provide insight in hadron dynamics

- Mathematical ambuiguities resolved
- Interference of S- and D-waves helps to identify resonant components
- Consistent picture of scalar sector through combination of different approaches

Backup Slides

A. Austregesilo (aaustreg@jlab.org) - Seminar

Technische Universität München

- Production of $\rho(770)$ disappears rapidly with increasing \sqrt{s}
- Low-mass enhancement and f₀(980) remain practically unchanged → characteristic for s-independent Pomeron-Pomeron scattering
- Kinematic selection cannot single out pure DPE sample

PWA of K^+K^- System

$X ightarrow K^+ K^-$

- Assumption: collision of two space-like exchange particles (P, R)
- Decay of X⁰ fully described by M(K⁺K⁻), cos(ϑ) and φ
- Decompose into complex-valued amplitudes (spherical harmonics) with definite spin and parity

