A study of the $\omega \rightarrow \pi^{+} \pi^{-}\left(\pi^{0}\right)$ decay in photoproduction at $3.6 \mathrm{GeV}<\mathrm{E}_{\text {beam }}<5.45 \mathrm{GeV}$ (CLAS-g12)

Status Report
Carlos Salgado
on behalf of
Andres Melo
this is his work of Master's Thesis Universidad de la República, Uruguay

CLAS Hadron Spectroscopy Meeting , 6/18/2015

Outline

- $p \pi^{+} \pi^{-}\left(\pi^{0}\right)(g-12)$ data
- extraction of the omega signal
- theory
- comparisons with theory
- summary

Why this study of the ω decay?

A physics model that extends the isobar model in PWA.
In this case a study of three-body decays (involved in many exotic searches)and comparison of different models with the isobar two-body calculations.

- Analyticity, Unitarity, crossing
- Regge theory
-Dispersion relations

Joint Physics Analysis Center Igor Danilkin, et al

also B. Kubis et al.

g12 CLAS run

Search for new forms of hadronic matter in photoproduction

-Data taking completed in 2008
-Photon Energy up to 5.5 GeV
-More than 26 billion triggers (2-prong +3 -prong)
-Total Luminosity: $68 \mathrm{pb}^{-1}$
-Data processing completed and physics analysis in progress

General ANALYSIS PROCEDURE being reviewed.

$$
\begin{aligned}
& \gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-}(n) \\
& \gamma p \rightarrow\left(\pi^{0}\right) \pi^{+} \pi^{-} p \\
& \gamma p \rightarrow K^{+} K^{+}\left(\Xi^{*-}\right)(1530) \\
& \gamma p \rightarrow p K^{+} K^{-}(\eta \Phi) \\
& \gamma p \rightarrow\left(p \pi^{+} \Delta\right) \pi^{-}(\eta) \\
& \gamma p \rightarrow \pi^{+} K^{+} K^{-}(n) \\
& \gamma p \rightarrow e^{+} e^{-} p
\end{aligned}
$$

We also performed cuts on the particles timing (ToF), which is the difference between the time of flight measured (ToF-SC) and the calculated through the pathlength assuming a given ID mass. We used $\quad\left(d T O F \pi^{+}\right)^{2}+\left(d T O F \pi^{-}\right)^{2}<4,(d T O F p)^{2}+\left(d T O F \pi^{-}\right)^{2}<4$

Kinematical Fit to $\boldsymbol{\pi}^{0}$

using standard g12 KF -> see g12 general procedures note

Proton Missing Mass (energy and time cuts)

Proton Missing Mass (energy, time and pull prob cuts)
Then we impose Pull Prob >0.15.

Mandelstam_tprime

Also, a cut on the Mandelstam variable t^{\prime} was performed: $3.5<\mathrm{t}^{\prime}<-0.6$

Proton Missing Mass (energy, time and all pull cuts)

Proton Missing Mass (energy, time, all pull and t cuts)

Finally, the fiducial and TOF knockout cuts are considered.
(standard g12-see general note)

$$
\text { Dispersive Analysis of } \omega / \phi \rightarrow 3 \pi, \pi \gamma^{*}
$$

I.V. Danilkin,,${ }^{1, *}$ C. Fernández-Ramírez, ${ }^{1}$ P. Guo, ${ }^{2,3}$ V. Mathieu, ${ }^{2,3}$ D. Schott, ${ }^{4}$ M. Shi, ${ }^{1,5}$ and A. P. Szczepaniak ${ }^{1,2,3}$ (Joint Physics Analysis Center)

Franz Niecknig, Bastian Kubis, Sebastian P. Schneider
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

$$
\frac{d^{2} \Gamma}{d s d t}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \frac{1}{3} P(s, t)|F(s, t, u)|^{2}
$$

$$
\mathrm{P}(\mathrm{~s}, \mathrm{t})=s t u-m_{\pi}^{2}\left(M^{2}-m_{\pi}^{2}\right)^{2}
$$

$$
F(s)=\Omega(s)\left(\frac{1}{\pi} \int_{s_{\pi}}^{s_{i}} d s^{\prime} \frac{\rho\left(s^{\prime}\right) t^{*}\left(s^{\prime}\right)}{\Omega^{*}\left(s^{\prime}\right)} \frac{\hat{F}\left(s^{\prime}\right)}{s^{\prime}-s}+\Sigma(s)\right)
$$

FIG. 1: Isobar decomposition

FIG. 2: Crossed channel rescattering effects.

$$
\Sigma(s)=\sum_{i=0}^{\infty} a_{i} \omega^{i}(s)
$$

The variable

$\mathrm{F}(\mathrm{s}, \mathrm{t}, \mathrm{u})=\mathrm{F}_{\mathrm{o}}(\mathrm{s}, \mathrm{t})+\mathrm{a}_{\mathrm{o}} \mathrm{F}_{1}(\mathrm{~s}, \mathrm{t})$

$$
\omega(s)=\frac{\sqrt{s_{i}-s_{E}}-\sqrt{s_{i}-s}}{\sqrt{s_{i}-s_{E}}+\sqrt{s_{i}-s}}
$$

(code available in the web at: http://cgl.soic.indiana.edu/jpac/)
Dalitz Analysis in x vs y

$$
\begin{aligned}
& x=\frac{\sqrt{3}}{Q}\left(T_{1}-T_{2}\right)=\frac{\sqrt{3}(t-u)}{2 M\left(M-3 m_{\pi}\right)}, \\
& y=\frac{3 T_{3}}{Q}-1=\frac{3\left(s_{c}-s\right)}{2 M\left(M-3 m_{\pi}\right)} .
\end{aligned}
$$

 $a_{0}=10$

$a_{0}=-10$

P-factor on log-z scale

Dalitz y:Dalitz x

Dalitz_y:Dalitz_x

Fit parametric model to data using the PyPWA framework - (generalShell module) see https://pypwa.jlab.org

Performing an Unbinned Extended Likelihood fit :

$$
-\ln \mathscr{L}=-\sum_{i=1}^{N} Q_{i} \ln \left[I\left(\vec{x}_{i}, \vec{a}\right)\right]+\frac{1}{N_{g}} \sum_{i=1}^{N_{a}} I\left(\vec{x}_{i}, \vec{a}\right)
$$

Minimized the negative log-likelihood on the model parameters

In our case:

$\mathrm{I}\left(\mathrm{sD}, \mathrm{tD}, \theta_{\text {Adair }}, \phi_{\text {Adair }}\right.$, parameters $)=$ production*decay

$$
\begin{align*}
& 3 \text { Fitted Function } \\
& I(s D, t D, u D, \theta, \phi, \mathbf{A} 1, \mathbf{A} 2, \mathbf{A} 3, \mathbf{A} 4, \mathbf{A} \mathbf{5})=\mathbf{A} 1 * W(\theta, \phi, \mathbf{A} 2, \mathbf{A} 3, \mathbf{A} 4) * P(s D, t D, u D) *[F(s D, t D, u D, \mathbf{A 5})]^{2} \\
& \text { whre } W \text { is the Schilling et al. spin dendity matrix (no-polarization): } \\
& \qquad W(\theta, \phi, \mathbf{A} 2, \mathbf{A} 3, \mathbf{A} 4)= \\
& \frac{3}{4 \pi}\left[0.5 *(1-\mathbf{A} 2)+0.5 *(3 * \mathbf{A} 2-1) \cos ^{2}(\theta)-\sqrt{2} * \mathbf{A} 3 * \sin 2(\theta) \cos (\phi)-\mathbf{A 4} * \sin ^{2}(\theta) \cos 2(\phi)\right] \\
& \text { and } \theta, \phi \text { are Adair's angles. P is a kinematic factor given by: } \tag{17}\\
& \quad P(s D, t D, u D)=s D * t D * u D-m_{\pi}^{2}\left[M^{2}-m_{\pi}^{2}\right]^{2} \\
& \text { wherre } s D, t D, u D \text { are the Mandelstam variables of the decay such that: } \tag{18}\\
& s D=\left(p_{X}-p_{\pi^{+}}\right) \mathrm{t} D=\left(p_{X}-p_{\pi^{-}}\right) \text {and } \mathrm{u} D=\left(p_{X}-p_{\pi^{0}}\right) \text {. } \\
& \text { and } p_{X}=p_{\pi^{+}}+p_{\pi^{-}}+p_{\pi^{0}}, \mathrm{M} \text { is the mass of the three pion system and } m_{\pi} \text { the } \\
& \text { mass of the pion (plus). } \\
& \quad \mathrm{F}(\mathrm{sD}, \mathrm{tD}, \mathrm{uD}, \mathbf{A 5}) \text { is Igor Danilkin et al. amplitude given for a call to his fortran } \\
& \text { code. }
\end{align*}
$$

MC was generated with a t-slope of $3 \mathrm{GeV}^{-2}$ to match data low t distributions. all t are included in current fits. (future analysis of t dependence is planned).

Preliminary Fits results

All	A2	A3	A4	A5
$3.5-4.0$	0.315	-0.016	-0.021	-12.53
$4.0-4.5$	0.315	-0.016	$-0,021$	-12.78
$4.5-5.0$	0.315	-0.016	-0.021	-12.82
$5.0-5.5$	0.191	0.018	-0.007	-12.8

nonF	A2	A3	A4
$3.5-4.0$	0.27	-0.018	-0.023
$4.0-4.5$	0.28	-0.026	$-0,068$
$4.5-5.0$	0.29	-0.022	-0.039
$5.0-5.5$	0.31	0.016	-0.021

\mathbf{F}	A 2	A 3	A 4	A 5
$3.5-4.0$	0.194	-0.016	-0.007	0 (fixed)
$3.5-4.0$	0.299	-0.018	$-0,08$	1 (fixed)
$3.5-4.0$	0.191	-0.018	-0.007	-12.8 (fixed normalization)

Still studying stability of fits: next steps

(ii) Circular polarization of helicity $\lambda_{\gamma}= \pm 1$:

$$
W^{ \pm}(\cos \theta, \phi)=W^{0}(\cos \theta, \phi) \pm P_{\gamma} W^{3}(\cos \theta, \phi)
$$

$W^{0}(\cos \theta, \phi)=\frac{3}{4 \pi}\left(\frac{1}{2}\left(1-\rho_{00}^{0}\right)+\frac{1}{2}\left(3 \rho_{00}^{0}-1\right) \cos ^{2} \theta\right.$

$$
\left.-\sqrt{2} \operatorname{Re} \rho_{10}^{0} \sin 2 \theta \cos \phi-\rho_{1-1}^{0} \sin ^{2} \theta \cos 2 \phi\right),
$$

$$
W^{3}(\cos \theta, \phi)=\frac{3}{4 \pi}\left(+\sqrt{2} \operatorname{Im} \rho_{10}^{3} \sin 2 \theta \sin \phi+\operatorname{Im} \rho_{1-1}^{3} \sin ^{2} \theta \sin 2 \phi\right)
$$

Parametrization of Dalitz intensity through:

$$
\begin{equation*}
x=\sqrt{z} \cos \vartheta, \quad y=\sqrt{z} \sin \vartheta, \tag{39}
\end{equation*}
$$

and fit the following polynomial expansion

$$
\begin{align*}
\left|F_{p a r}(z, \vartheta)\right|^{2}= & |N|^{2}\left(1+2 \alpha z+2 \beta z^{3 / 2} \sin (3 \vartheta)+2 \gamma z^{2} \quad\right. \text { Kubis et al } \\
& \left.+2 \delta z^{5 / 2} \sin (3 \vartheta)+\mathcal{O}\left(z^{3}\right)\right) \tag{40}
\end{align*}
$$

Preliminary Results and Things still to be done

- $\omega \rightarrow \pi^{+} \pi^{-}\left(\boldsymbol{\pi}^{0}\right)$ events for $3.6<\mathrm{E}_{\text {photon }}<5.4 \mathrm{GeV}$ have been extracted given a mass for the ω of 783.5 MeV and width of 9.92 MeV (PDG: $782.65,8.49$). Sample with very small background.
- Comparison with theory has started:
-Data seems dominated by P-wave (as expected).
-The extra-terms of the three-body decay models are important at the edges of the Dalitz plots where acceptance/statistics are very limited.

Next steps:

- Study Fit stability.
- Introduce other parametrization (and polarization,...)
- Study Energy and t dependancies.

