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• pπ+π-(πo)  (g-12)  data 
• extraction of the omega signal
•  theory
• comparisons with theory
• summary                                  
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A physics model that extends the isobar model in PWA.

In this case a study of three-body decays (involved in many exotic 
searches)and comparison of different models with the isobar two-body 
calculations.

Joint Physics Analysis Center
Igor Danilkin, et al•Analyticity, Unitarity, crossing

•Regge theory
•Dispersion relations
• ...

Why this study of the ω decay? 

also B. Kubis et al.
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Search for new forms of hadronic matter in photoproduction 

•Data taking completed in 2008
•Photon Energy up to 5.5 GeV
•More than 26 billion triggers (2-prong + 3-prong)
•Total Luminosity: 68 pb-1

•Data processing completed and physics analysis in progress

General ANALYSIS PROCEDURE being reviewed.

γp → π+π+π−(n)
γp → (π0)π+π−p 
γp → K+K+ (Ξ∗− )(1530)
γp → pK+K- (ηΦ)
γp → (pπ+Δ) π−(η)
γp → π+K+K−(n)
γp → e+e−p
...

Meson Spectroscopy
•Search for exotic mesons
•Study of Strangeonia
•…

Baryon Spectroscopy
•Cascades
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g12 CLAS run
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γp → (π0)π+π−p 
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Kinematical Fit to πo

using standard g12 KF -> see g12 general procedures note
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Full mass region

γp → (π0)π+π−p 
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(standard g12 - see general note)
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Qf > 0.7
(Qf as defined in Williams Thesis)

Thursday, June 18, 2015



CLAS Meeting   Melo / Salgado            JLab        June , 2015 13

8

V. NUMERICAL RESULTS

A. ω/φ → 3π

We solve the integral equation in Eq.(31) by numerical
iteration 3. The convergence is fast, typically after three
to four iterations, no significant variations in the solution
are observed. From the amplitude, it is straightforward
to compute the Dalitz plot distribution, the partial decay
and the total, 3π decay widths, [1]

d2Γ

ds dt
=

1

(2π)3
1

32M3

1

3
P (s, t) |F (s, t, u)|2 , (37)

where P (s, t) = φ(s, t)/4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that fol-
low, the conformal expansion in Eq. (29) is truncated at

0th order i.e. only a constant term is kept and this is
the only free parameter of the model. It is fixed to repro-
duce the measured 3π decay width for ω and φ, which
are Γexp

ω→3π = 7.57 MeV and Γexp
φ→3π = 0.65 MeV, respec-

tively [1]. Since the integral equation is linear in F (s),
the one parameter that is fitted is responsible for the
overall normalization, while the Dalitz plot distribution
is only affected by higher order terms in Σ(s).

In Fig. 5 we show the solution of the integral equa-
tion (31) together with the invariant mass distribution.
The significance of the three-body effects, given by the
cross-channel terms, is accessed by keeping or eliminat-
ing F̂ from the discontinuity relation. In either case Σ(s)
is represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of
the crossed-channels for ω → 3π is less significant than
for φ → 3π. In both cases, the invariant mass distribu-
tion are quite similar. The three body effects are more
pronounced for the Dalitz plot distributions to which we
turn next.

In Fig. 6 we show the Dalitz plot distribution in terms
of Lorentz invariant, dimensionless parameters

x =

√
3

Q
(T1 − T2) =

√
3(t− u)

2M(M − 3mπ)
,

y =
3T3

Q
− 1 =

3(sc − s)

2M(M − 3mπ)
. (38)

Here Ti is the kinetic energy of the i-th pion in the three-
particle rest frame and, using the isospin-averaged pion

3 Note, that the double integral in Eq. (31) (F̂ (s) is given by a
contour integral over t as shown in Eq. (19)) can be inverted
using the Pasquier method [28, 55]. In this method the order of
the s and t integration is reversed with the latter deformed onto
a real axis that needs can be calculated analytically or numeri-
cally only once. This leads to a single-variable integral equation
for F̂ (s) with a kernel that depends on the input two-body scat-
tering amplitude. This is an equivalent method to solve the KT
equation which has its advantages and disadvantages [56].

mass, Q = M − 3m2
π and sc =

1
3 (M

2 + 3m2
π) represents

the location of the center of the Mandelstam triangle.
Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For
ω decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in [37] and introduce polar variables

x =
√
z cosϑ , y =

√
z sinϑ , (39)

and fit the following polynomial expansion

|Fpar(z,ϑ)|
2 = |N |

2
�
1 + 2α z + 2β z3/2 sin(3ϑ) + 2 γ z2

+2 δ z5/2 sin(3ϑ) +O(z3)
�

(40)

to our matrix element. In (40) N is the overall nor-
malization constant. To find Dalitz plot parameters we
minimize

χ̄2 =

�

D

dz dϑ

ND

�
P (z,ϑ)2(|Fpar(z,ϑ)|2 − |F (z,ϑ)|2)

P (0, 0)2|N |2

�2

ND =

�

D

dz dϑ , (41)

where the integration range (D) is limited by the Dalitz
plot. The results are summarized in Table I. There is a
non negligible deviation between the Dalitz plot param-
eters with and without three body effects. In particular,
the three-body effects result in the decrease of intensity
by approximately 5% at the boundary of the Dalitz plot
and an increase by approximately 2% in the center. A
similar, but even more significant effect is observed for
φ → 3π, where the Dalitz plot intensity decreases at
the boundary by 42% and increases by 6% in the central
area. In Table I we also compare our results with other
theoretical calculations from [19] and [37]. We find our
Dalitz plot parameters to be quite similar to [37] (which
is not surprising since our formalisms are similar) and
in general smaller than the ones given in [19]. The lat-
ter calculation is based on a chiral Lagrangian modified
by explicit inclusion of light vector mesons [18]. In [18]
the unknown coupling constants of the Lagrangian were
obtained from the decay properties of the vector mesons
[57]. To this extent, the result of [19] provides a good
estimate for the decay width, while in the present anal-
ysis the decay width was used to fix the normalization.
The shortcoming of the approach in [19] is that it does
not fully comply with unitarity. Though the two-body
partial waves were unitarized, the crossed-channel effects
were not included.
On the experimental side, the situation is the follow-

ing: The measurements of φ → 3π were performed by
KLOE [58] and CMD-2 [59] collaborations. As for ω de-
cay we expect new data from CLAS12, WASA at COSY
and KLOE collaborations. Since the main purpose of the
present paper is to outline a novel theoretical scheme, we
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FIG. 1: Isobar decomposition.

FIG. 2: Crossed channel rescattering effects.

ity, the natural starting point for amplitude construction

is the partial wave expansion. At low energies, it is ex-

pected that only low partial waves are significant and

therefore the infinite partial waves series can be trun-

cated to a finite sum. We refer to such an approximation

as the isobar model [38]. The diagrams representing a

truncated partial waves series, a.k.a the isobar decompo-

sition are shown in Fig.1.

Implementation of unitarity on a truncated set of par-

tial waves leads to the so called Khuri-Treiman (KT)

equations [26, 27, 39]. In the the KT framework elas-

tic unitarity in the three crossed channels is used to de-

termine the discontinuity of partial waves which are then

reconstructed using a Cauchy dispersion relation. Conse-

quently additional diagrams contribute to the amplitude,

see Fig. 2. Since, as discussed above, the model truncates

the number of partial waves, it is intrinsically restricted

to low energies. In other words the high-energy behavior

in the KT framework is arbitrary. Mathematically, this

translates into an arbitrariness in choosing the bound-

ary condition for the solution of an integral equation,

which follows from the dispersion relation. It is therefore

more appropriate to consider the KT framework as a set

of constrains on partial wave equations. Furthermore,

above threshold of production of inelastic channels the

KT amplitudes will couple to other open channels. Any

scheme that tries to reduce the sensitivity of the elastic

KT equations to the high-energy contributions in dis-

persion integrals should therefore take into account the

change in the analytical properties of the partial wave

amplitudes above the inelastic open channels. A novel

implementation of this feature within the KT framework

is the main new ingredient of the approach presented in

this paper.

In previous works, in order to suppress sensitivity to

the unconstrained high-energy region, subtracted disper-

sion relations were used [33, 34, 37]. Moreover, KT equa-

tions depend on the elastic 2 → 2 scattering amplitudes.

The ππ → ππ amplitudes needed for analysis of ω/φ
decays have been studied in Ref. [20]. These studies con-

strain the amplitudes only up to certain center of mass

energy (somewhat above K̄K threshold) and this adds

further uncertainty into the KT framework. For exam-

ple, in previous analyses of the vector meson decays the

ππ phase shift was extended beyond the elastic region

with a specific model [37]. In this paper we present an

alternative to the subtraction procedure, which not only

suppresses the high-energy contributions to the disper-

sive integrals, but also takes into account the change in

the analytical properties induced by the opening of in-

elastic channels. Specifically, we split the dispersive in-

tegral into elastic and inelastic parts, and parameterize

the latter in terms of an appropriately chosen conformal

variable.

The paper is organized as follows. In the next section

we summarize the derivation and main features of the KT

framework as applied to the vector meson decays. The

discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive re-

lation are discussed in Sections III and IV. The numerical

analysis of ω/φ → 3π is presented in Section VA. In Sec-

tion VB we consider the electromagnetic (EM) transition

form factors of ω/φ → π0γ∗
as a further application of

our formalism. Summary and outlook are presented in

Section VI.

II. PARTIAL WAVE OR ISOBAR

DECOMPOSITION

The matrix element for the three pion decay of a vector

particle is given in terms of a helicity amplitude H
abc
λ ,

�πa
(p1)π

b
(p2)π

c
(p3) |T |V (pV ,λ)� =

= (2π)4 δ(pV − p1 − p2 − p3)H
abc
λ . (1)

Here pV and λ are the momentum and helicity of the vec-

tor particle, V = ω/φ in our case, p1, p2, p3 are the mo-

menta of outgoing pions with a, b, c denoting their Carte-

sian isospin indices. The Lorentz-invariant Mandelstam

variables are defined by s = (pV − p3)
2
, t = (pV − p1)

2
,

u = (pV − p2)
2
and satisfy the relation

s+ t+ u = M
2
+ 3m

2
π . (2)

The helicity amplitude H
abc
λ can be expressed in terms

of a single scalar function of the Mandelstam variables,

since Lorentz and parity invariance imply that,

H
abc
λ = i �µναβ �

µ
(pV ,λ) p

ν
1 p

α
2 p

β
3

P
1
abc√
2

F (s, t, u) , (3)
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Dispersive analysis of ω → 3π and φ → 3π decays

Franz Niecknig, Bastian Kubis, Sebastian P. Schneider

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn,
D–53115 Bonn, Germany

Abstract. We study the three-pion decays of the lightest isoscalar vector mesons, ω and φ, in a dispersive
framework that allows for a consistent description of final-state interactions between all three pions. Our
results are solely dependent on the phenomenological input for the pion–pion P-wave scattering phase shift.
We predict the Dalitz plot distributions for both decays and compare our findings to recent measurements
of the φ → 3π Dalitz plot by the KLOE and CMD-2 collaborations. Dalitz plot parameters for future
precision measurements of ω → 3π are predicted. We also calculate the ππ P-wave inelasticity contribution
from ωπ intermediate states.

PACS. 11.55.Fv Dispersion relations – 13.25.Jx Hadronic decays of other mesons – 13.75.Lb Meson–meson
interactions

1 Introduction

The treatment of meson decays into three pions using dis-
persion relations is a classic subject. It was developed first
in the 1960s in the context of K → 3π decays [1], and
already in the 1970s, it was applied specifically to the
decay ω → 3π [2]. One of its main virtues is the fact
that final-state interactions among the three pions are
fully taken into account, in contrast to perturbative, field-
theory-based approaches; the constraints coming from an-
alyticity and unitarity are respected exactly to all orders.
This becomes the more important, the higher the mass
of the decaying particle, hence the higher the possible en-
ergies of the two-pion subsystems within the Dalitz plot:
while decays like K → 3π or η → 3π have successfully
been analyzed in perturbative settings like chiral pertur-
bation theory [3, 4] or even non-relativistic effective theo-
ries [5–7], it is obvious that these are doomed to fail for the
decays of ω or φ into three pions, where the influence of
the ρ resonance is already strongly felt (ω) or even shows
up in the form of resonance bands inside the Dalitz plot
(φ).

In recent years, there has been a flourish of attempts
to also treat the physics of vector mesons in effective-field-
theory approaches [8–15], motivated not least because of
their prominent nature in hadronic physics involving vir-
tual photons, their relatively low masses among the var-
ious meson resonances, and their strong coupling to the
light pseudoscalars. However, when it comes to the three-
pion decays of ω and φ, descriptions in terms of vector-
meson dominance and improved tree-level models (mostly
incorporating a finite width of the intermediate ρ res-
onances) [13, 16–18] (see also Ref. [19] for earlier refer-

ences), which do not fully respect analyticity and unitarity
constraints, still seem to be state of the art.1

In this respect, we consider this an ideal time to
take up dispersive studies of these decays once more.
High-precision phase-shift analyses of pion–pion scatter-
ing are now available [20–22] and can be employed as
input for decay studies. On the experimental side, high-
statistics Dalitz plot investigations have either been per-
formed (φ → 3π [23, 24]), or are planned or ongoing
(ω → 3π [25, 26]). Finally, these systems are ideal test
cases to study the achievable precision of Dalitz plot de-
scriptions with theoretically rigorous methods: they are
simple in terms of partial waves, as entirely P-wave domi-
nated, and kinematically in the transition regime between
the light (kaon, eta) decays and those of heavy (D, B)
mesons that might be treated with similar methods in the
future [27].

The outline of this article is as follows. We introduce
the necessary basics on kinematics and partial-wave de-
composition in Sect. 2, and describe the formalism for a
dispersion-theoretical description of the decays ω, φ → 3π
in Sect. 3. First numerical results of our solutions are dis-
cussed in Sect. 4, before we compare in detail to the exper-
imental Dalitz plot studies for φ → 3π and predict Dalitz
plot parameters for ω → 3π in Sect. 5. As a further appli-
cation, we calculate the contribution of ωπ intermediate
states to the inelasticity in the pion–pion P partial wave
in Sect. 6. We conclude in Sect. 7. Several aspects that

1 It needs to be pointed out, though, that Lagrangian-based
approaches often have the advantage of relating various differ-
ent processes to each other; such symmetry constraints most
of the time have nothing to do with analyticity and unitarity,
and hence can at best be imposed a posteriori in dispersive
studies.
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The decays ω/φ → 3π are considered in the dispersive framework that is based on the isobar
decomposition and sub-energy unitarity. The inelastic contributions are parametrized by the power
series in a suitably chosen conformal variable that properly account for the analytic properties of
the amplitude. The Dalitz plot distributions and integrated decay widths are presented. Our results
indicate that the final state interactions may be sizable. As a further application of the formalism
we also compute the electromagnetic transition form factors of ω/φ → π0γ∗.

PACS numbers: 13.20.Jf, 11.55.Fv, 13.25.Jx, 13.75.Lb

I. INTRODUCTION

Three particle production plays an important role in

hadron physics. In the past, analysis of the three-pion

spectrum led to the discovery of several prominent meson

resonances [1]. With high precision data already avail-

able, for example from the COMPASS Collaboration [2]

and expected from Jefferson Lab [3], in the near future it

will be possible to further resolve the three pion spectrum

and identify new resonances that do not necessarily fit the

quark model template. Indeed, in the charmonium spec-

trum several candidates for non-quark model resonances

have recently been reported [4, 5]. Several of these were

observed in decays to three-particle final states. Proper

description of interactions in the three-particle system is

also required to advance lattice gauge computations of

scattering amplitudes [6–9].

Because of large production yields, hadron systems are

also an important laboratory for studies of weak interac-

tions, symmetry tests and searches for physics beyond the

Standard Model [10, 11]. Sensitivity to weak interactions

demands high precision in determination of hadronic am-

plitudes. Near threshold there are first principle con-

straints that can help in this process. These low-energy

constraints include, for example, chiral symmetry, par-

tial wave and effective range expansions, and unitarity.

In general, however, it is impossible to construct a single

analytical function that describes a reaction amplitude

in the entire range of kinematical variables and satisfies

all of the constraints imposed by the relativistic S-matrix

theory. Nevertheless, analyticity is a powerful constraint

that enables to connect different regions of the spectrum

e.g. constrain resonance parameters by the behavior of

∗Electronic address: danilkin@jlab.org

the amplitude elsewhere, including both the near thresh-

old and the high-mass regions.

In this paper we focus on the analysis of three pion

production at low energies in particular from decays of

the light-vector, isoscalar mesons, the ω and the φ. At

low energies, chiral perturbation theory (χPT) serves as
a powerful constraint on amplitudes involving the light

pseudo-scalar mesons [12, 13]. χPT has been applied to

the three pion production from the η decays [14, 15]. In

the case of ω/φ → 3π, χPT can be extended by including

light vector mesons as additional degrees of freedom [16–

19]. In a perturbative study, germane to an effective field
theory, unitarity is only satisfied order-by-order in the

loop expansion. On the other hand, from the perspective

of the S-matrix theory, unitarity is the key feature that

constraints singularities of the reaction amplitude and

therefore the amplitude itself. For this reason there has

been a lot of interest in application of dispersion relations

to low energy production of pseudoscalar mesons [20–25].

Dispersive methods have been used in description of

relativistic three body decays in the past [26–29]. For

example, the decay η → 3π [30–35], is of interest because

it is sensitive to isospin breaking, which in QCD origi-

nates from the mass difference between the up and down

quarks. Dispersive analysis of ω decay was performed in

[36] and more recently in [37]. It is of interest because it

sheds light on the vector mesons dominance and the in-

terplay between the QCD dynamics, which is believed to

be responsible for the vector meson formation and its de-

cay characteristics restricted by unitarity and long-range

interactions.

In relativistic S-matrix theory a function connecting

four external particles describes reaction amplitudes of

all processes related by crossing, i.e. the three 2 → 2

scattering channels and, if kinematically allowed, a de-

cay channel 1 → 3. Therefore, unitary constraints ought

to be considered in all physical channels connected by the

same analytical function. With the emphasis on unitar-
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We presented the single-differential and Dalitz plot dis-
tributions, where we found non-negligible three body ef-
fects. We also found our results to be similar to the
ones of [37] where standard subtraction procedure was
applied. As a straightforward application of the three-
body amplitude we studied electromagnetic form factors
for ω/φ mesons. The results improve over the simple
VMD model, however, our theoretical analysis and the
other studies [18, 66] predict the EM transition form fac-
tor for ω → πγ∗ to be smaller at s = (Mω −mπ)2 than
that measured by the NA60 collaboration. To shed more
light on the intrinsic dynamics of hadrons at low ener-
gies the experimental analysis of OZI-suppressed decay
φ → π0l+l− is highly desirable. The shape of the latter
is predicted within our framework.

As a next step we plan to perform the data analysis
of the upcoming ω → 3π JLab g12 data. Note, that the
same method can be applied to treat D and B mesons

three body decays. Another prospect is the hadronic
light-by-light contribution to the anomalous magnetic
moment of the muon [68], where ω/φ → πγ∗ serve as in-
put ingredients to the pion transition form factor Fπ0γ∗γ∗

and γ∗γ∗ → ππ partial waves.
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FIG. 1: Isobar decomposition.

FIG. 2: Crossed channel rescattering effects.

ity, the natural starting point for amplitude construction

is the partial wave expansion. At low energies, it is ex-

pected that only low partial waves are significant and

therefore the infinite partial waves series can be trun-

cated to a finite sum. We refer to such an approximation

as the isobar model [38]. The diagrams representing a

truncated partial waves series, a.k.a the isobar decompo-

sition are shown in Fig.1.

Implementation of unitarity on a truncated set of par-

tial waves leads to the so called Khuri-Treiman (KT)

equations [26, 27, 39]. In the the KT framework elas-

tic unitarity in the three crossed channels is used to de-

termine the discontinuity of partial waves which are then

reconstructed using a Cauchy dispersion relation. Conse-

quently additional diagrams contribute to the amplitude,

see Fig. 2. Since, as discussed above, the model truncates

the number of partial waves, it is intrinsically restricted

to low energies. In other words the high-energy behavior

in the KT framework is arbitrary. Mathematically, this

translates into an arbitrariness in choosing the bound-

ary condition for the solution of an integral equation,

which follows from the dispersion relation. It is therefore

more appropriate to consider the KT framework as a set

of constrains on partial wave equations. Furthermore,

above threshold of production of inelastic channels the

KT amplitudes will couple to other open channels. Any

scheme that tries to reduce the sensitivity of the elastic

KT equations to the high-energy contributions in dis-

persion integrals should therefore take into account the

change in the analytical properties of the partial wave

amplitudes above the inelastic open channels. A novel

implementation of this feature within the KT framework

is the main new ingredient of the approach presented in

this paper.

In previous works, in order to suppress sensitivity to

the unconstrained high-energy region, subtracted disper-

sion relations were used [33, 34, 37]. Moreover, KT equa-

tions depend on the elastic 2 → 2 scattering amplitudes.

The ππ → ππ amplitudes needed for analysis of ω/φ
decays have been studied in Ref. [20]. These studies con-

strain the amplitudes only up to certain center of mass

energy (somewhat above K̄K threshold) and this adds

further uncertainty into the KT framework. For exam-

ple, in previous analyses of the vector meson decays the

ππ phase shift was extended beyond the elastic region

with a specific model [37]. In this paper we present an

alternative to the subtraction procedure, which not only

suppresses the high-energy contributions to the disper-

sive integrals, but also takes into account the change in

the analytical properties induced by the opening of in-

elastic channels. Specifically, we split the dispersive in-

tegral into elastic and inelastic parts, and parameterize

the latter in terms of an appropriately chosen conformal

variable.

The paper is organized as follows. In the next section

we summarize the derivation and main features of the KT

framework as applied to the vector meson decays. The

discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive re-

lation are discussed in Sections III and IV. The numerical

analysis of ω/φ → 3π is presented in Section VA. In Sec-

tion VB we consider the electromagnetic (EM) transition

form factors of ω/φ → π0γ∗
as a further application of

our formalism. Summary and outlook are presented in

Section VI.

II. PARTIAL WAVE OR ISOBAR

DECOMPOSITION

The matrix element for the three pion decay of a vector

particle is given in terms of a helicity amplitude H
abc
λ ,

�πa
(p1)π

b
(p2)π

c
(p3) |T |V (pV ,λ)� =

= (2π)4 δ(pV − p1 − p2 − p3)H
abc
λ . (1)

Here pV and λ are the momentum and helicity of the vec-

tor particle, V = ω/φ in our case, p1, p2, p3 are the mo-

menta of outgoing pions with a, b, c denoting their Carte-

sian isospin indices. The Lorentz-invariant Mandelstam

variables are defined by s = (pV − p3)
2
, t = (pV − p1)

2
,

u = (pV − p2)
2
and satisfy the relation

s+ t+ u = M
2
+ 3m

2
π . (2)

The helicity amplitude H
abc
λ can be expressed in terms

of a single scalar function of the Mandelstam variables,

since Lorentz and parity invariance imply that,

H
abc
λ = i �µναβ �

µ
(pV ,λ) p

ν
1 p

α
2 p

β
3

P
1
abc√
2

F (s, t, u) , (3)

3

where P 1
abc = −i �abc/

√
2 is the isospin factor correspond-

ing to the coupling of three isospin-1 pions to a state with
total isospin-0. The invariant amplitude F (s, t, u) satis-
fies Mandelstam analyticity [40, 41] which postulates that
it is an analytic function everywhere except for cuts re-
quired by unitarity. The scalar function F (s, t, u) is free
from kinematical singularities [42, 43]. The latter appear
in the covariant factor in front of F (s, t, u) in Eq. (3).
Crossing symmetry implies that the function F (s, t, u)
describes the decay V → 3π and also the three V π → 2π
scattering channels. Since we are interested in a partial
wave decomposition it is necessary to consider the helicity
amplitude, Habc

λ first. In the physical region of s-channel
scattering, V (pV ,λ)πc(p3̄) → πa(p1)πb(p2), the Mandel-
stam variable s = (pV +p3̄)

2 = (pV −p3)2 corresponds to
the square of the center of mass energy and t = (pV −p1)2

is related to the cosine of the s-channel scattering angle
by

zs = cos θs =
t− u

4 p(s) q(s)
≡ t− u

k(s)
(4)

where

q(s) =
λ1/2(m2

π,m
2
π, s)

2
√
s

, p(s) =
λ1/2(M2

,m
2
π, s)

2
√
s

(5)

are the magnitude of the relative momentum between the
outing pions in the s-channel center of mass frame and
the magnitude of the incoming pion’s momentum in the
same frame, respectively. λ(x, y, z) = x

2+y
2+z

2−2 (xy+
yz + xz) is the Källén triangle function. The s-channel
partial wave decomposition is given by [44]

H
abc
λ =

P
1
abc√
2

�

J=1,3,...

(2J + 1) dJλ0(θs) f
J
λ (s) (6)

with d
J
λ0(θs) being the Wigner d-functions and we choose

the x−z plane as the reaction plane. Due to Bose symme-
try the sum over partial waves is restricted to odd values
of J and parity conservation implies that fJ

0 (s) = 0 and
f
J
+1(s) = −f

J
−1(s) ≡ fJ(s). Therefore there is only one

independent helicity amplitude, which is consistent with
there being a single scalar function, F (s, t, u) describing
the strong coupling between an isoscalar vector and three
pions. The relation betweenH

abc
λ and F (s, t, u) in Eq. (3)

enables the determination of the kinematical singulari-
ties of the partial wave amplitudes fJ(s). Expressing
the Wigner d-functions in terms of Legendre polynomi-
als (with prime denoting a derivative)

d
J
10(θ) = − sin θ�

J(J + 1)
P

�
J(cos θ) . (7)

and defining the reduced partial waves FJ(s) by

FJ(s) ≡
√
2√

s p(s) q(s)

2J + 1�
J(J + 1)

fJ(s)

(p(s) q(s))J−1
(8)

the series in Eq. (6) becomes,

H
abc
+ = −P

1
abc

√
φ

4

�

J=1,3, ...

(p(s)q(s))J−1
P

�
J(zs)FJ(s) (9)

where φ is the Lorentz-invariant Kibble function

φ = (2
√
s sin θ p(s) q(s))2

= s t u−m
2
π

�
M

2 −m
2
π

�2
. (10)

Finally, comparing Eq. (9) with Eq. (3) one finds the
desired relation between the scalar amplitude F (s, t, u)
and the reduced partial wave amplitudes FJ(s) as

F (s, t, u) =
�

J=1,3,...

(p(s) q(s))J−1
P

�
J(zs)FJ(s) , (11)

The sum over partial waves runs over odd values of J
and the derivative of the Legendre polynomial is an even
polynomial in zs of order (J − 1). Therefore the product
of the factors in front of FJ(s) in Eq. (11) is a polyno-
mial in the s, t and u variables and it is therefore free
from kinematical singularities. Since F (s, t, u) has only
dynamical singularities this implies that the reduced par-
tial waves must also have only the dynamical singularities
and therefore can be expressed in terms of discontinuities
across unitary cuts.
We emphasize that in Eq. (11) the sum extends to

infinity. The sum converges in the s-channel physical
region and it is to be analytically continued to obtain
amplitudes in the physical regions of the other two scat-
tering channels or the decay channel. Since in Eq. (11)
each term in the sum is a polynomial in t and u, singular-
ities of F (s, t, u) in these variables demanded by the t or
the u channel unitarity can only emerge from the infinite
number of terms in the sum. The isobar approximation
amounts to truncating the partial wave series at a finite
value of J = Jmax. In order to retain dynamical singu-
larities of F (s, t, u) in all three variables, in the isobar
model, the scalar amplitude is approximated by a linear
combination of truncated partial wave series in the three
channels simultaneously1, which yields,

F (s, t, u) =
Jmax�

J=1,3,...

(p(s)q(s))J−1
P

�
J(zs)FJ(s)

+(s → t) + (s → u) (12)

where because of the Bose symmetry, the partial waves
in each channel are given by the same function FJ(x)
with x = s, t, u. The t and u channel scattering angles

1 In principle, the isobar decomposition should be written for the
full amplitude H

abc
λ , but since product of the isospin and kine-

matic factors in Eq. (3) is symmetric under permutation of pions
we only need to symmetrize F (s, t, u).

P(s,t)

6

FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω�(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
∞�

i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
√
si − s

(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

�
1

π

� si

sπ

ds�
ρ(s�) t∗(s�)

Ω∗(s�)

F̂ (s�)

s� − s
+ Σ(s)

�
.

(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.
In Eq. (31) there is no need for subtractions in the dis-

persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.
Besides F (s), the problem with the determination of

inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp

�
s

π

� si

sπ

ds�

s�
δ(s�)

s� − s

�
, (32)
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FIG. 6: The Dalitz plots for ω → 3π (left-hand panel) and φ → 3π (right-hand panel) decays. The distributions are divided
by the p-wave phase space P and normalized to 1 at x = y = 0. This is a parameter free result, because we kept only one term
in the conformal expansion (29) which is responsible for the overall normalization. See main text for details.

TABLE I: Dalitz Plot parameters and
�

χ̄2 of the polynomial parametrization (40) for ω → 3π. In addition to our results
we also show the selected results from Niecknig et al. [37] (dispersive study with incorporated crossed-channel effects) and
Terschlusen et al. [19] (Lagrangian based study with the pion-pion rescattering effects).

α× 103 β × 103 γ × 103 δ × 103
�

χ̄2 × 103

This paper (F̂ = 0) 136 - - - 3.5

This paper (full) 94 - - - 3.2

Niecknig et al. [37] 84...96 - - - 0.9...1.1

Terschlusen et al. [19] 202 - - - 6.6

This paper (F̂ = 0) 125 30 - - 0.74

This paper (full) 84 28 - - 0.35

Niecknig et al. [37] 74...84 24...28 - - 0.052...0.078

Terschlusen et al. [19] 190 54 - - 2.1

This paper (F̂ = 0) 113 27 24 - 0.1

This paper (full) 80 27 8 - 0.24

Niecknig et al. [37] 73...81 24...28 3...6 - 0.038...0.047

Terschlusen et al. [19] 172 43 50 - 0.4

This paper (F̂ = 0) 114 24 20 6 0.005

This paper (full) 83 22 1 14 0.079

Niecknig et al. [37] 74...83 21...24 0...2 7...8 0.012...0.011

Terschlusen et al. [19] 174 35 43 20 0.1

postpone the comprehensive data analysis to the future
and for now only consider the application to electromag-
netic (EM) transition form factors of ω/φ. In partic-
ularly, the transition ω → πγ∗ is of interest since the
existing data in the time-like region seems to be incom-
patible with the vector meson dominance model (VMD)
[60, 61].

B. ω/φ → πγ∗

In this section we discuss the EM transition form fac-
tors of the ω and φ mesons. The Dalitz decay of the
vector mesons into pion and a lepton pair

�π0(p0) l
+(p+) l

−(p−) |T |V (pV ,λ)� =
(2π)4 δ(pV − p0 − p+ − p−)HV π , (42)

6

FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω�(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
∞�

i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
√
si − s

(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

�
1

π

� si

sπ

ds�
ρ(s�) t∗(s�)

Ω∗(s�)

F̂ (s�)

s� − s
+ Σ(s)

�
.

(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.
In Eq. (31) there is no need for subtractions in the dis-

persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.
Besides F (s), the problem with the determination of

inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp

�
s

π

� si

sπ

ds�

s�
δ(s�)

s� − s

�
, (32)
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V. NUMERICAL RESULTS

A. ω/φ → 3π

We solve the integral equation in Eq.(31) by numerical
iteration 3. The convergence is fast, typically after three
to four iterations, no significant variations in the solution
are observed. From the amplitude, it is straightforward
to compute the Dalitz plot distribution, the partial decay
and the total, 3π decay widths, [1]

d2Γ

ds dt
=

1

(2π)3
1

32M3

1

3
P (s, t) |F (s, t, u)|2 , (37)

where P (s, t) = φ(s, t)/4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that fol-
low, the conformal expansion in Eq. (29) is truncated at

0th order i.e. only a constant term is kept and this is
the only free parameter of the model. It is fixed to repro-
duce the measured 3π decay width for ω and φ, which
are Γexp

ω→3π = 7.57 MeV and Γexp
φ→3π = 0.65 MeV, respec-

tively [1]. Since the integral equation is linear in F (s),
the one parameter that is fitted is responsible for the
overall normalization, while the Dalitz plot distribution
is only affected by higher order terms in Σ(s).

In Fig. 5 we show the solution of the integral equa-
tion (31) together with the invariant mass distribution.
The significance of the three-body effects, given by the
cross-channel terms, is accessed by keeping or eliminat-
ing F̂ from the discontinuity relation. In either case Σ(s)
is represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of
the crossed-channels for ω → 3π is less significant than
for φ → 3π. In both cases, the invariant mass distribu-
tion are quite similar. The three body effects are more
pronounced for the Dalitz plot distributions to which we
turn next.

In Fig. 6 we show the Dalitz plot distribution in terms
of Lorentz invariant, dimensionless parameters

x =

√
3

Q
(T1 − T2) =

√
3(t− u)

2M(M − 3mπ)
,

y =
3T3

Q
− 1 =

3(sc − s)

2M(M − 3mπ)
. (38)

Here Ti is the kinetic energy of the i-th pion in the three-
particle rest frame and, using the isospin-averaged pion

3 Note, that the double integral in Eq. (31) (F̂ (s) is given by a
contour integral over t as shown in Eq. (19)) can be inverted
using the Pasquier method [28, 55]. In this method the order of
the s and t integration is reversed with the latter deformed onto
a real axis that needs can be calculated analytically or numeri-
cally only once. This leads to a single-variable integral equation
for F̂ (s) with a kernel that depends on the input two-body scat-
tering amplitude. This is an equivalent method to solve the KT
equation which has its advantages and disadvantages [56].

mass, Q = M − 3m2
π and sc =

1
3 (M

2 + 3m2
π) represents

the location of the center of the Mandelstam triangle.
Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For
ω decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in [37] and introduce polar variables

x =
√
z cosϑ , y =

√
z sinϑ , (39)

and fit the following polynomial expansion

|Fpar(z,ϑ)|
2 = |N |

2
�
1 + 2α z + 2β z3/2 sin(3ϑ) + 2 γ z2

+2 δ z5/2 sin(3ϑ) +O(z3)
�

(40)

to our matrix element. In (40) N is the overall nor-
malization constant. To find Dalitz plot parameters we
minimize

χ̄2 =

�

D

dz dϑ

ND

�
P (z,ϑ)2(|Fpar(z,ϑ)|2 − |F (z,ϑ)|2)

P (0, 0)2|N |2

�2

ND =

�

D

dz dϑ , (41)

where the integration range (D) is limited by the Dalitz
plot. The results are summarized in Table I. There is a
non negligible deviation between the Dalitz plot param-
eters with and without three body effects. In particular,
the three-body effects result in the decrease of intensity
by approximately 5% at the boundary of the Dalitz plot
and an increase by approximately 2% in the center. A
similar, but even more significant effect is observed for
φ → 3π, where the Dalitz plot intensity decreases at
the boundary by 42% and increases by 6% in the central
area. In Table I we also compare our results with other
theoretical calculations from [19] and [37]. We find our
Dalitz plot parameters to be quite similar to [37] (which
is not surprising since our formalisms are similar) and
in general smaller than the ones given in [19]. The lat-
ter calculation is based on a chiral Lagrangian modified
by explicit inclusion of light vector mesons [18]. In [18]
the unknown coupling constants of the Lagrangian were
obtained from the decay properties of the vector mesons
[57]. To this extent, the result of [19] provides a good
estimate for the decay width, while in the present anal-
ysis the decay width was used to fix the normalization.
The shortcoming of the approach in [19] is that it does
not fully comply with unitarity. Though the two-body
partial waves were unitarized, the crossed-channel effects
were not included.
On the experimental side, the situation is the follow-

ing: The measurements of φ → 3π were performed by
KLOE [58] and CMD-2 [59] collaborations. As for ω de-
cay we expect new data from CLAS12, WASA at COSY
and KLOE collaborations. Since the main purpose of the
present paper is to outline a novel theoretical scheme, we

Dalitz Analysis in x vs y

ao=0

F(s,t,u)=Fo(s,t)+aoF1(s,t)
(code available in the web at: http://cgl.soic.indiana.edu/jpac/)

Thursday, June 18, 2015
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ao=0

ao=-10 ao=10
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P-factor on log-z scale
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Performing an Unbinned Extended Likelihood fit :

Fit parametric model to data using the 
PyPWA framework - (generalShell 
module) see  https://pypwa.jlab.org

Minimized the negative log-likelihood on the model 
parameters

Thursday, June 18, 2015
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In our case: 
           

            I(sD,tD,θAdair,φAdair, parameters) = production*decay

t u

MC was generated with a t-slope of 3 GeV-2 to match data low t distributions. - 
all t are included in current fits. (future analysis of t dependence is planned).

Thursday, June 18, 2015
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Preliminary Fits results
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404 K. SCHILLING et al .  

(i) Unpolar ized photons.  F r o m  P7 = 0, one has 

wunp°l(cos ~, q)) = W0(cos O, ~) . (32) 

(ii) C i r cu la r  polar iza t ion  of hel ic i ty  )t 7 = ± 1: 

w~(cos e, ~) = w°(cos e, ~) • P~ w3(cos o, ~) 

(iii) L inea r  polar izat ion:  

wL(cos  0, (~, 4)) = W0(cos (~, qS) - P y  cos 24) w l ( co s  ~, qb) 

- Py sin 24) W2(cos ~, ~b) . 

(33) 

(34) 

The eqs. (27) and (28) hold in any coordinate  sys tem that can be r eached  
f ro m  the hel ic i ty  sys tem by a rota t ion R around the no rma l  to the produc-  
tion plane, due to the s y m m e t r y  p r o pe r t i e s  of the rota t ion m a t r i c e s  dl(R). 
We sketch the proof,  e.g. ,  for  pO. In the ro ta ted  sys tem,  pO is given by: 

~o  ~ 1 o 1 
Prom' = dml_t (R)Putz 'd l . t 'm ' (R-1)  

I.t l.Z ' 

The following calculat ion shows the s y m m e t r y  p rope r ty  e q .  ( 2 7 )  to hold in 
the ro ta ted  coordinate  sys tem:  

~o ~ 1 o , 1 
= d_mt.z(R) P - m  -m '  PI.Lt.t' d-_ m' U '(R) I.Z l.t ' 

1 o d L , _ u , ( R  ) (_ l ) /z ' -m'  = ~ ( -1 )m- t ' t dm_u(R)pUU,  
gl.t' 

1 o d l ' -  U' (R) = (_1) m- re '  ~ dm_~t(R)P_~t_tz, 
tz/z' 

, ~ m - m V  ~ 0  = t - l )  Prom' q . e . d . .  

Hence,  the s t r u c t u r e s  of the decay angular  dis t r ibut ions  given by eqs. (32), 
(33) and (34) r ema in  unchanged under  such a rotat ion.  

2.6. R e s t r i c t i o n s  on the va lues  o f  the dens i ty  m a t r i x  e l e m e n t s  
When ext rac t ing  the density ma t r ix  e lements  f rom exper imenta l  data by 

means  of f i ts ,  one should keep in mind that the i r  numer i ca l  values  a r e  r e -  
s t r i c t ed  by the following inequali t ies:  

Ip~x , [  2 ~< p~Xp~ ,x ,  ot = 0 , 1 , 2 , 3 ,  ( 3 5 )  

PRODUCTION BY POLARIZED PHOTONS 403 

2 i 
p , - ~ )~ TkVAN,,_AyA N T-*, - (26c) AVA V 2NA AN,A N ~ A  N,,AYA N ' 

= 1 ~ Ay TXVAN ,,AYA s Tk{TAN,* ,AA s . (26d) P vAv: 2 AAN,A 
Par i ty  conservat ion (eq. (20)) r educes  the number  of independent mat r ix  

e lements  
P~A' ( - I ? - A '  ~ = P-A-A' , ~ = 0, 1 , (27) 

(_l)X-X' PAX' = - P-A-A' , ~ = 2, 3 . (28) 

F r o m  t h e s e  e q u a t i o n s  a n d  the  h e r m i t i c i t y  o f  t h e  p(~(~ = 0, . . .  3) f o l l o w s  t h a t  
P? 1, Pl 1 1 a re  rea l  and p2 1, p3 1 purely  imaginary.  Because  the decay 
dl%-t¥ibut]on W in eq. (10) ]s~line-ar in p(V), the represen ta t ion  eq. (25) may 
be used  to decompose  W as  well: 

3 
W(cos O, ~, p) = W°(cos O, qS) + ~ P°tW°l (cos O, q~) , (29) 

(~=1 Y 

where  W a ( a  = 0 , . . .  3) is defined by eq. (10) with p rep laced  by pa:  
Wa(cos0 ,  q~) = W(cosO,(~,p °t) , ot = 0 , . . . 3  . (30) 

Because  of the s y m m e t r i e s  of the pa (eqs. (27) and (28)), the W a reduce  to: 

3 i 1 {(3p00-  1) cos 2 0 W°(cos 0, ~) = ~ (~( -p° 0) + 

-(2-Rep00 sin20 cos~b - p 0 _ l  s in20 cos2~b) , 

WI(cos  O, qS) 3 (P I sin20 +P010 c°s20  P]oS 20 cos* = ~  

-P~-I sin20 cos2qS) , 

W2(cosO,qS) = ~ 3  (+~/~imp20 s in20 s i n ~  + I m p 2 _ l s i n 2 0  sin2~b) 

W3(cos0,~b) : 4~(+~/2Im p~0 sin20 sinqb +ImpS_ 1 sin20 sin2q~) . (31) 

Because p2, p3 have the same symmetries the structures of W2,W 3 are the 
same. wO,w i differ only insofar as for our choice of normalization trp 0= 1, 
whereas there is no trace condition for p l  For easy reference we list here 
the explicit forms of the decay angular distributions for the various photon 
polar iza t ions  by inser t ing ~ of eq. (19) into eq. (31): 
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V. NUMERICAL RESULTS

A. ω/φ → 3π

We solve the integral equation in Eq.(31) by numerical
iteration 3. The convergence is fast, typically after three
to four iterations, no significant variations in the solution
are observed. From the amplitude, it is straightforward
to compute the Dalitz plot distribution, the partial decay
and the total, 3π decay widths, [1]

d2Γ

ds dt
=

1

(2π)3
1

32M3

1

3
P (s, t) |F (s, t, u)|2 , (37)

where P (s, t) = φ(s, t)/4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that fol-
low, the conformal expansion in Eq. (29) is truncated at

0th order i.e. only a constant term is kept and this is
the only free parameter of the model. It is fixed to repro-
duce the measured 3π decay width for ω and φ, which
are Γexp

ω→3π = 7.57 MeV and Γexp
φ→3π = 0.65 MeV, respec-

tively [1]. Since the integral equation is linear in F (s),
the one parameter that is fitted is responsible for the
overall normalization, while the Dalitz plot distribution
is only affected by higher order terms in Σ(s).

In Fig. 5 we show the solution of the integral equa-
tion (31) together with the invariant mass distribution.
The significance of the three-body effects, given by the
cross-channel terms, is accessed by keeping or eliminat-
ing F̂ from the discontinuity relation. In either case Σ(s)
is represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of
the crossed-channels for ω → 3π is less significant than
for φ → 3π. In both cases, the invariant mass distribu-
tion are quite similar. The three body effects are more
pronounced for the Dalitz plot distributions to which we
turn next.

In Fig. 6 we show the Dalitz plot distribution in terms
of Lorentz invariant, dimensionless parameters

x =

√
3

Q
(T1 − T2) =

√
3(t− u)

2M(M − 3mπ)
,

y =
3T3

Q
− 1 =

3(sc − s)

2M(M − 3mπ)
. (38)

Here Ti is the kinetic energy of the i-th pion in the three-
particle rest frame and, using the isospin-averaged pion

3 Note, that the double integral in Eq. (31) (F̂ (s) is given by a
contour integral over t as shown in Eq. (19)) can be inverted
using the Pasquier method [28, 55]. In this method the order of
the s and t integration is reversed with the latter deformed onto
a real axis that needs can be calculated analytically or numeri-
cally only once. This leads to a single-variable integral equation
for F̂ (s) with a kernel that depends on the input two-body scat-
tering amplitude. This is an equivalent method to solve the KT
equation which has its advantages and disadvantages [56].

mass, Q = M − 3m2
π and sc =

1
3 (M

2 + 3m2
π) represents

the location of the center of the Mandelstam triangle.
Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For
ω decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in [37] and introduce polar variables

x =
√
z cosϑ , y =

√
z sinϑ , (39)

and fit the following polynomial expansion

|Fpar(z,ϑ)|
2 = |N |

2
�
1 + 2α z + 2β z3/2 sin(3ϑ) + 2 γ z2

+2 δ z5/2 sin(3ϑ) +O(z3)
�

(40)

to our matrix element. In (40) N is the overall nor-
malization constant. To find Dalitz plot parameters we
minimize

χ̄2 =

�

D

dz dϑ

ND

�
P (z,ϑ)2(|Fpar(z,ϑ)|2 − |F (z,ϑ)|2)

P (0, 0)2|N |2

�2

ND =

�

D

dz dϑ , (41)

where the integration range (D) is limited by the Dalitz
plot. The results are summarized in Table I. There is a
non negligible deviation between the Dalitz plot param-
eters with and without three body effects. In particular,
the three-body effects result in the decrease of intensity
by approximately 5% at the boundary of the Dalitz plot
and an increase by approximately 2% in the center. A
similar, but even more significant effect is observed for
φ → 3π, where the Dalitz plot intensity decreases at
the boundary by 42% and increases by 6% in the central
area. In Table I we also compare our results with other
theoretical calculations from [19] and [37]. We find our
Dalitz plot parameters to be quite similar to [37] (which
is not surprising since our formalisms are similar) and
in general smaller than the ones given in [19]. The lat-
ter calculation is based on a chiral Lagrangian modified
by explicit inclusion of light vector mesons [18]. In [18]
the unknown coupling constants of the Lagrangian were
obtained from the decay properties of the vector mesons
[57]. To this extent, the result of [19] provides a good
estimate for the decay width, while in the present anal-
ysis the decay width was used to fix the normalization.
The shortcoming of the approach in [19] is that it does
not fully comply with unitarity. Though the two-body
partial waves were unitarized, the crossed-channel effects
were not included.
On the experimental side, the situation is the follow-

ing: The measurements of φ → 3π were performed by
KLOE [58] and CMD-2 [59] collaborations. As for ω de-
cay we expect new data from CLAS12, WASA at COSY
and KLOE collaborations. Since the main purpose of the
present paper is to outline a novel theoretical scheme, we

Still studying stability of fits: next steps

Parametrization of Dalitz intensity through:

Schilling et al

Kubis et al
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Preliminary Results and Things still to be done

• ω ➞ π+π-(πo) events for 3.6< Ephoton <5.4 GeV have been extracted given a mass for 
the ω of 783.5 MeV and width of 9.92 MeV (PDG: 782.65,8.49). Sample with very 
small background.
• Comparison with theory has started:

•Data seems dominated by P-wave (as expected).
•The extra-terms of the three-body decay models are important at the edges of 
the Dalitz plots where acceptance/statistics are very limited.

Next steps:
- Study Fit stability.
- Introduce other parametrization (and polarization,...)
- Study Energy and t dependancies.

Thursday, June 18, 2015


