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Abstract: The accurate study of collisions with more than two particles in the final
state is greatly hampered by the high dimensionality of the phase space in which
the distribution of final states must be investigated. Taking advantage of the fact
that in hadron collisions at high energy all transverse momenta remain generally
small, we separate phase space into its longitudinal and transverse parts, and we
show that for a n-particle collision the longitudinal phase-space distribution re-
duces to a manifold of dimension #-2. We study the main properties of longitudinal
phase-space plots, the way in which relativistically invariant subenergies and
momentum transfers vary along them, as well as the qualitative properties of
reggeized multiperipheral amplitudes. The longitudinal phase-space plot is pa-
rametrized by new angular variables Wy, ...wy_s and the interest of plotting
events against them is demonstrated. The paper ends with a new method for Mon-
te Carlo integration of phase-space integrals.

1. INTRODUCTION

The dynamical study of hadron collisions with more than two particles in
the final state is greatly hampered by the high dimensionality of phase
space. The common procedures of plotting single particle momentum dis-
tributions or two-particle effective mass distributions give only a very in-
complete reflection of the true experimental phase-space distribution, and
they are therefore of limited use for discovering empirical characteristics
of the data as well as for testing experimentally the dynamical models pro-
posed by strong interaction theory.

As suggested earlier [1], we believe that these difficulties can be alle-
viated in the case of multiparticle collisions at high energy (incident lab
energy E]ap ~ 8 GeV) by means of longitudinal phase-space plots. The use-
fulness of these plots stems from the well-known empirical fact that the
transverse momenta of outgoing particles are restricted to small values,
their average being of order 0.3 to 0.4 GeV/c for pions and protons respec-
tively, and are largely independent of incident energy. Concequently, when
the latter is large, the phase-space distribution extends mainly in the di-
rections corresponding to large longitudinal momenta, and many of its
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characteristic features can already be read from analyzing its projection
on longitudinal phase space.

The present paper describes the main kinematic properties of longitu-
dinal phase-space plots, especially for 3 and 4 particle collisions, in the
approximation where the masses and the transverse momenta are small
compared with the incident center-of-mass (¢.m.) momentum (sects. 2 and
3). It discusses the distribution of invariant subenergies and momentum
transfers in longitudinal phase space, as well as the qualitative properties
of double Regge amplitudes for a three-particle collision (sects. 4 and 5).
It also proposes a new method for Monte Carlo integration of (complete)
phase-space integrals which should become useful when the above approxi-
mation holds (sect. 6 and appendix).

2. LONGITUDINAL PHASE SPACE AT HIGH ENERGY
AND SMALL TRANSVERSE MOMENTA

We consider the collision A+B — Cy +...Cy,. Let W be its total c.m.
energy. We denote the c.m. longitudinal momentum of C; by ¢4, its trans-
verse momentum by r; and its c.m. energy by

2 2 21 2 24
Eiz(mi"'ri "'qi)z = (mz +qi)2 s (1)
m. = (m2+r2)% (2)

Here, m; can be called an effective mass for longitudinal motion. We have
of course

n n n
EEZ.=W, quzo, Eri=0. (3)
1 1 1

We propose to represent each individual collision by the point of coordi-
nates g1, ...4y in the n-dimensional euclidean space S;. Momentum con-
servation, eq. (3), implies that all such points lie in the (n-1)- dimensional
hyperplane L_1 of equation 2 g;= 0. We call Ly_1 the longitudinal phase
space. For fixed values of the r; and hence of the mj, the points (g1, ...45)
lie on the (2-2)- dimensional hypersurface Kj_9 defined in Ljy_1 by the
equation

L2 a2t

2 (m; +q;)2 =W . (4)

1 .
When all qlz > m%z, this equation reduces to

n

2 gl =W, (5)
1
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which defines a polyhedron Hy,_9 in L,_1. Its plane faces obtain for all
g; #0. Its 'sides' of dimensionalities #-3, n-4,..., and its vertices cor-
respond to points (g1, ...45n) where 1, 2,..., n- 3 and n-2 of the g; vanish.
For these ¢4, the approximation of neglectmg mz is not valid, andit is there-
fore along the sides and vertices that Ky.9 deviates most strongly from
Hy_-9. In particular for qlz- < m}2, one has
2 2% SO 2 '
(mi +qi) ~ ml+(ql/2mz) . (6)

This formula shows that the shape of the hypersurface Kj_g differs from
the polyhedron Hj,_s mainly through the fact the latter s sides and vertices
are rounded off. This rounding off depends on the mz, i.e. on the masses
m; and the transverse momenta r;. As shown by eq. (6), the rounding off
corresponds to a distance of order m between K _9 and Hy;_9 along the side
where g; = 0. This is small compared to the overall size of Hy_9 and Kj;_9,
which is of order W. The hypersurface K;_9 is always inside Hy_9, and
K, -9 for non-vanishing r; is always inside K;.9 for all r; = 0.

Fig. 1 shows, for a three-body collision (#=3), the plane Lg containing
the polyhedron Hy, which is a regular hexagon, as well as the manifold Ky,
here a curve, for two sets of transverse momenta. The parameters are

W=4, mq = mg =My, mg = MmN ,
mg = 0.14 = pion mass, mpy = 0.94 = nucleon mass)
N
ri=rp=rg=0, (outer curve Kj) ,
|r1|=|r2| =04, rgl =05, (inner curve Ki) .

Here and below all quantities are in GeV, with the convention ¢ = 1. In
terms of polar coordinates ¢, w in the plane L9, the ¢; belonging to its
points are found to be

q1=«/-§qsinw, q2=«/_§q[-ésinw—%w/§cosw],

qs = Vi g[-z sinw+3V3 cos o] , )

with ¢ = (q2 +q% +q2)% The gq; are «/— times the distances of its points to
the 11nes qZ = 0. The scale shown in fig. 1 has been read]usted by this fac-
tor %, so that in this scale the ¢; are the distances themselves to the lines
q; = 0, while the distance to the origin 0 is now J? g. The regions of posi-
tive and negative ¢; are indicated by + and - signs. Fig. 2 shows the hexa-
gon Hy and the curve Ky for W = 16, the other parameters being the same
as for the inner curve cf fig. 1.

Fig. 3 presents the experimental distribution of events in the longitudi-
nal phase space Lg for the reaction 7*p —~ 777 at pion lab momentum
8 GeV/c, which closely corresponds to W = 4 (ref. [2]). The longitudinal
momenta g are here denoted by P and the corresponding particle. The
outer curve is Kj for vanishing transverse momenta of all three particles.
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Scale in GeV

Fig. 1. Longitudinal phase-space plot Fig. 2. Longitudinal phase-space plot
for 77N at c.m. energy W = 4 GeV. The for 7#wN at c.m. energy W = 16 GeV.
inner full curve is K1 for transverse The full curve is Kq for transverse
momenta 0.4, 0.4, 0.5 GeV/c respec- momenta 0.4, 0.4, 0.5 GeV/c. The
tively, the outer one is Kj for vanish- dashed lines represent the hexagon Hy
ing transverse momenta. The dashed near its vertices. The scale is the
line represents the hexagon Hy. For same as defined in the text for fig. 1.
the definition of the scale, see the
text.
t'p—prtn® AT 8 GeVic

AT 8 Gevic 112<(pHIMASS <1.34 GeV

2266 EVENTS

322 EVENTS

o

Fig. 3. Experimental longitudinal phase-space plot for 7tp — 77O at lab momentum

8 GeV/c, from Aachen-Berlin-CERN Collaboration [2]. The longitudinal momenta

are here denoted by pi. Fig. 3a contains all events, fig. 3b those where 7*p is in the

N*** region. The latter figure illustrates the location of a resonance on the plot (see

also sect. 4). The curve is Kj for vanishing transverse momenta, The scale is de-
fined as specified in the text for fig. 1.
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"p—-N** ey AT 18 GeVic

681 EVENTS

e et
30 0% N
P" , Gevic

Fig. 4. Experimental longitudinal phase-space plot for 7-p —m7-N*** at lab mo-
mentum 16 GeV/c, from Aachen-Berlin-Bonn-CERN-Heidelberg Collaboration [3].
All events are included. The curve is Kj for vanishing transverse momenta, the
N**+ mass having its central value. The spread of this mass explains that some
points fall outside the curve. The scale is defined as specified in the text for fig. 1.

The experimental distribution for 77p = 777 N*** at 16 GeV /c [3] is given
in fig. 4.

For four-body collisions (n=4), the longitudinal phase space L3 has
three dimensions. The polyhedron Hg is shown in fig. 5. In the original
metric of the 84 space of points (g1, ...494), the g; are the distances to the
planes OAB, OBD, OCE agld (l)AE respectively, each multiplied by 3V3
(this factor would be (2-1)z /% for general #). The sign of the distances is
so defined that ¢ > 0, 42,3,4 <0 for the point P in fig. 5. The square faces
of Hg carry points for which two ¢; are positive and two negative, the
points on the triangular faces have three g; of the same sign (and hence the
fourth with the opposite sign). All sides of Hg are equal. The surface Ko,

not shown in fig. 5, differs from Hg mainly by the rounding off of sides and
vertices.

Fig. 5. The polyhedron Hg in the longitudinal phase space of a four-particle collision
(n=4). The hatched face is defined in sect. 4.
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3. VOLUME ELEMENT IN LONGITUDINAL PHASE SPACE

We discuss in this section the relativistically invariant volume element
in phase space

n
-1
where dVy, the non-relativistic volume element into the c.m. system, sep-

arates into

avy = dVTdVII\;,

n n
avT = 52 (? ri>11—[d2rz- R

(T = transverse, L = longitudinal)

n %o 91 R
dVﬁ = 6(2 qi)cS(Z) (mi +qi)2 - W)qui .

We are concerned with the longitudinal element dV%\‘I at fixed values of the
mj (i.e. of the |r; ). In the space S, we go over to the cylindrical coordi-
nates wi,...wy-2, ¢ and @ depicted in fig. 6 (for n=3). The wi,...wy-9
are polar angle coordinates in the hyperplane Ly_1 (in fig. 6 there is only
one angle w). The lengths ¢ and @ are the distances OP', PP' respectively,
where PP' is perpendicular to Ly_1. They are given in sign and magnitude
by

Fig. 6. The longitudinal phase space for a three-particle collision (#=3) and the defi-
nition of the variables w, ¢ = OP' and @ = P'P.
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Now dV%\‘I is easily transformed into

Ay = 7% 6(9)d - 0(¢-qo)dq - Dydy-2 @,

where dj,_g w is the element of solid angle wy, ... wy,_9 (or equivalently the
hypersurface element on the unit hypersphere in Ly_1), and g4, Dy are
functions of W, mq,... my, and w1, ...wy,_9 defined by
n 1
v2 2 2 2
Lmeq v =W, g0, (8)
1
n 1
o n-2/2 [ 53, 12 225} _
Dy=¢ aq[—l(mi +q%v;)" | at g =qo . (9)
Here the v; are the directional cosines of (g1, ...q;) in Sy:
L n
;= (a2+9%)z v, , ?y? =1. (10)

When the point (91, ...4gy) is in Ly,_1 (i.e. @=0), the y; are functions of
w1,...wy_9 only. For n=3, they are the quantities multiplying g in eq. (7).
Note that the root g of eq. (8) exists only when

n
W>?m'i, (11)

which is a condition on transverse momenta. The relativistic volume ele-
ment now is

dvg = aviavy,

dVIi:t =n"28(Q)d@-0(g-q,)dg - DRdy_gw ,

n
2 2 2] -1
DR = [I;I(mz +qo'yi )} 2 DN

ol

Fig. 7 shows DN and DR for #=3 as functions of the angle w of fig. 6. They
are normalized to maximum value one, and the parameters used are

W=4, my=mg=mg, mg = my ,
|ri| = |r2| =04, |r3| =0.5. (12)

In the approximation where all g; > m;, eqgs. (8) and (9) become
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02+ ----- Dg/Max Dy

00 805 360°

Fig. 7. The non-relativistic and relativistic phase-space weight functions Dy and Dy

for n=3 plotted against the angle w and normalized to maximum value one. The

curves refer to 77N at c.m. energy W = 4 GeV and transverse momenta 0.4, 0.4 and
0.5 GeV/c.

0~ W[5 nl]

" w1 n-1
DNN w qo .

It is then easy to verify that, on each face of the polyhedron H,,_g to which
Kj -2 reduces in this approximation, one has

DN dy-gw ¥ cdypZ

Here dj,_9 Z is the hypersurface element on Hy_9 (for #=3, d1 Z is the line
element P'P] in fig. 6), and ¢ remains constant on each face, its value

being
Laql
c = 3[n/i(n-1)]2 ,
on a face where j of the variables ¢1, ... gy have one sign and #-j the oppo-
site one.

4. INVARIANT SUBENERGIES AND MOMENTUM TRANSFERS

Dynamical studies of multiparticle collisions make much use of rela-
tivistically invariant variables, especially the two-particle subenergies

2 2
sl] = (pl+p])2 = ml +m]. +2EZE]-2qlq]- 2 rz" I'j )
and the single particle momentum transfers
P )2 = w2 4o .
i= (PA-D)* = my + m; -2EAE;+2qAq; ,

' 2 2
£ = (pB 'Pﬁz = g+ M -2EBE;+2qpyg; -
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360°

Fig. 8. The subenergies sy, sg3 and the momentum transfer 7, t:? plotted as func-

tion of the angle w for the collision 7N — 77N at c.m. energy 4 GeV and transverse

momenta 0.4, 0.4, 0.5 GeV/c¢ for the outgoing particles. The vertical scale is in
(GeV)=.

The p denote the four-momenta of the particles and g5 = -gp the incident
(purely longitudinal) ¢c.m. momentum. For #=3 and the parameters (12), the
quantities s12, s23, {1 and /3 are plotted against the angle w in fig. 8; the
incident particles are taken to be A = 7, B = N. Increasing the c.m. energy
to W= 16 for the same masses and transverse momenta, we obtain fig. 9.
The polygonal shape now taken by the curves is striking. It can be under-
stood as follows. In the limit of large energy one has, for any » and in the
notations of sect. 3, the expansion

n
-2
s~ 22 v | =v) (% e )

2 2 2 12
+ +ml'. |7’j/7’i|+mj |yi/yj|-2ri-rj+...,

n n
t;~ - w2[ |74 -Yﬂ(z |?’k’)_1 +mi[1 -2 |7’i|(Z> IYkI)-l]
1 1

n
2 2 -1
+m-m (Zf ka]>|2yz-| oo,

n n
to~ - W i i) (2 e )t emi -an(? vel) ™
n
. m'j-mf@ v el) 12vil e

The terms neglected are of order W-2. The characteristic of these formu-
lae is that their first line gives essentially linear variations over an inter-
val of order W2 as long as Yi¥js Vi O =¥ is negative, but vanishes other-
wise. The following lines give finite expressions independent of W; their
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Fig. 9. Same quantities as in fig. 8, Fig. 10. Enlarged view of the small s
except that the c.m. energy is here and |tl region of fig. 9. The vertical
16 GeV. scale is again in (GeV)2.

shape is illustrated for #=3 in fig. 10 which shows the middle section of
fig. 9 on an enlarged scale. The regions where Sijs t; or t'i remain finite
even for large W are easily recognized in kinematic terms:

Sij finite, YiYj Or 44 > 0: the particles C; and Cj
go both forward or both
backward in the c.m. system;

t; finite, y; > 0 or g¢; > 0: C; goes forward in the
c.m. system;

z‘; finite, v; < 0 or g¢; < 0: C; goes backward in the
c.m. system.

As clearly seen for n=3 in fig. 10, the region where s1g and sg3 are both
large and |f1 |, |¢3 | both finite (region of 'double Regge behaviour', see
sect. 5) is limited to the immediate neighbourhood of w = 120°.

The above discussion, and especially the expansions of Sijy tis t]" for
large W, show that the sides and vertices of the polyhedron Hy,_9, i.e. the
configurations where one or more g; vanish, have at high energy a relativ-
istically invariant meaning through the fact that they correspond to sharp
breaks in the variations of invariant subenergies and momentum transfers.
The discussion also allows to locate the regions of the longitudinal phase-
space plot where two or more final particles form a resonance (see fig. 3b
for an experimental example).

Another type of invariant momentum transfer which is often considered
is defined by

Hity- i) = (bA =Py - ~P3)? = (bR~ Diy - -03)% .
Its asymptotic behaviour for W — « can be discussed by the type of expan-

sion already used. We restrict ourselves here to the remark that, for
W — =, the region of K,,_g ~H,_g where |i(iq,... i) remains finite is the
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set of faces of Hy-2 on which all ¢4, ... sz > 0 and/or all Qiip1s -« - Qip < 0.
For example, for #(1,2) and»#=4, this region is composed of the hatched
square face and the four adjacent triangular faces in fig. 5. The proof of
our general statement is the following. Consider #(1,...7) and neglect all
masses and transverse momenta. One can then write

Jj J
H1,...0) =[laal+aa- ?(Iqilwi)]'[lqu ‘QA'?(lCIi"‘Ii)] :

A being forward, |qA| = gA. If all 91,...49j> 0, the second factor vanishes.
If all Zj+ls - dn < 0, the forward particles are all among Cy,...C; and
they give the non-vanishing terms in

J

213 (lgi| +ad -

Energy conservation then makes this sum equal to 2 |qa |.

5. MULTIPERIPHERAL REGGE MODEL

Considerable success has been reached by the Regge version of the mul-
tiperipheral model in accounting for the observed single particle distribu-
tions in multiparticle collisions [4]. Use of longitudinal phase-space plots
can be expected to provide many new tests of such models and, more gen-
erally, to give more concrete insight into the dynamical behaviour of the
collisions. We limit ourselves here to a brief discussion of the model for
n=3, considering the diagram in fig. 11. The corresponding amplitude can
be written in the general form

A= Ay Ay f(512,523,11,13) ,

A
= C 40 2
., A
B o
" 30} o
/All ; ",
2 o b
Py
\ Py
' l'n or (AA,)°05
0 l‘ "
FZC 240

Fig. 11. Various quantities relating to a double Regge amplitude corresponding to the

diagram in the upper left corner, plotted against w for a collision 7N — 77N at c.m.

energy 10 GeV, all transverse momenta being 0.3 GeV/c. The curve for (A142)2 Dp
has an arbitrary normalization.
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¢ L
A1 = (b+s19)%1(00) Ag = (b+s93)723) |

where a1(f1), ag(t'3) are the Regge trajectories, & is a parameter< 1 (we
continue to use the GeV as unit), and f is a complex function remaining
bounded for s19 and/or s93 —» +%=. The Regge exponents and/or f ensure
that A vanishes exponentially for #{ and/or té — -, From figs. 9 and 10
the high-energy situation is then clear. Assuming positive slopes daq/dty
and day/dfy, we find

0 <w<120°:A41 > 1if o1(¢) >0, Ay <1lifey(H) <0
1200 < w < 180°: 47 ~ 1
180° < w < 360°: 47 <« 1
600 < w < 120°: A9 ~ 1
1200 < w < 2400 : Ag > 1 if ag(f3) > 0, Ag < 1 if ag(#3) < 0
0 <w< 60°and 240° < w<360°: 49 < 1.

Fig. 11 illustrates In A1 and 1n Ag as functions of w for

MA = M1 = m9 = my , mpB = mg = my ,
W =10, all [r;| =03,
ap(t) = aot) =3 +¢, b=1.

It also gives (A142)2 and (A1A49)2 DR, the latter with arbitrary normaliza-
tion. The peak structure obtained, which will not be qualitatively affected
by the additional factor f in the amplitude, is a priori rather remarkable.
Its qualitative features are readily interpreted on the basis of the general
behaviour of A1, Ag as discussed above. Then, (A1A2)2 has one peak for w
between 600 and 120°; it comes from the maximum of A1 at w = 60° which
is displaced to larger w by Ag. The second peak of (A1A2)2, between 120°
and 180°, is produced by the maximum of Ag at w = 1800, displaced to
smaller w by A1. The maxima of (A1A49)2, however, are further displaced
by the sharp peaks of DR, i.e. of the relativistic phase-space element.
These peaks occur at w = 120°, where the pion Cg has g3 = 0, and at

w = 1800, where the pion Cq has g1 = 0. Hence, (A1A3)2 Dy has a peak for
w just below 120° and one for w just below 180°. The occurrence of the
latter peak is surprising because it corresponds to a situation where Cg
goes forward compared to Ct, in contradiction with the natural ordering of
longitudinal momenta (g1 > g9 > g3) expected for the diagram of fig. 11. In
the region 120° < w < 180°, AjAg should show strong interference with the
amplitude from the diagram obtained by interchanging Cq and Cs.

Fig. 11 refers to a situation where all transverse momenta are 0.3. In-
creasing this value, one finds that the maximum of A9 decreases faster
than the one of A1, and that the peak of (A1A9)2 DR at w = 180° soon be-
comes a mere shouider; this occurs e.g. when all ]rl' = 0.5. The peak at
w = 120°, on the other hand, remains quite pronounced. Inversely, de-
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creasing the |r;| causes a more rapid increase of the w = 180° peak which
becomes even higher than the w = 120° one when all |r;| are 0.1. All these
qualitative features are already present for a c.m. energy as low as 4.

These considerations clearly indicate the interest of plotting experimen-
tal data not only in longitudinal phase space, as illustrated in figs. 3 and 4,
but also against the angle w as in fig. 11. This can be done by summing
over all transverse momenta or by taking characteristic intervals of them.
In such plots it will be useful to give each event a weight proportional to
Dkl so as to bring out the magnitude of the relativistically invariant matrix
element. In addition, our discussion suggests that a study of transverse
momentum distributions and correlations for constant w (i.e. for w within
rather small intervals) would also be very instructive.

6. THE PRINCIPLE OF A NEW MONTE CARLO INTEGRATION METHOD

We end this paper by suggesting a new method for Monte Carlo evalua-
tion of phase-space integrals. It is based on the separation of longitudinal
and transverse momenta considered above and it is most suitable for inte-
grals which get their main contribution from the small transverse momen-
tum region (although it is applicable in principle to any phase-space inte-
gral). Consider the integral

J= [FdVg

where dVR is the relativistically invariant volume element considered in
sect. 3, and F(p1,...Pn), Pi=(qi, ri), is a function of the # particle mo-
menta. The integration extends over the whole of phase space; energy con-
servation makes this a finite domain.

Using the definitions and results of sects. 2 and 3, we rewrite J in the
form

J= [F1 dVT 5(Q)dQ 6(g-qo)dq  dn-2 w ,

1 n 1
Fy =n"2 Foy ([ 12;)"1=n2 FDR . (13)
1
To separate the function
n
o9 (E I'Z'>
1
contained in dVT, we introduce a (r X ) orthogonal Oy; satisfying
1
Oppm=n"2,i=1,...n, (14)

and we define new vectors w1y, ... u,; through
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ry=_ Ojuj. (15)
J=1

An explicit example of such a matrix is given in the appendix. From eq.
(14) and the orthogonality condition

n
_Z)l 04j Ojp=bjk ; jk=1,...n,
=

we conclude

Ll 1
Z:l)rz':?’lzlln.

Furthermore, again from orthogonality,
n n
[Tdgri=[[dgu;.
1 1
Hence
n
avT = -1 Gz(un)mdgui )

Our next step is to introduce a gaussian weighing factor in the transverse
momenta

L 2 LN
d = exp(-p Eri) = exp(-p 2 ui) . (16)
1 1

Orthogonality of Oj; justifies equality of the two expressions. Egs. (13) can
now be written

n-1
J= [ Fy 6(Q)dQ da(un)duy - 6(4-q0)dgq - (& III dauy) * dp-gw,
F2 = n_% FDR ¢—1 s

or, after performing the delta function integrations,

n-1
J= [Fa(® T;[ daudp-2w ,

where now, in ® and F9, the constraints

Q@=up=0, q=4qp,

are to be used. Note that the latter requires that condition (11) of sect. 3
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holds, where the m'z are now functions of the u; through eq. (15). If it does
not, the point uq,...u,-1 contributes zero to the integral.

The proposed Monte Carlo procedure consists in generating random
vectors uy,...uy-1 and random polar angles wq, ... wy-2 according to the
probability distribution

n-1
dN = (@ Il"[ dyu;)dp-2 w ,

n-1
® = exp(-p Zl> u?) . 17)

From the w and w, through eqs. (10) and (15) where the former are taken
for ¢ = o, @ =0, we calculate the corresponding ¢q1,...qn, ri,...ryto
be introduced in F9 and we obtain for J the Monte Carlo estimate

J= [FydN.

At the end of the present section we shall mention an explicit procedure to
construct the polar angles wi,...wy-2 and to calculate the functions
yi(wl, ...wp-9) of egs. (10).

For high-energy collisions, useful functions F would be such that they
tend rapidly toward zero when one or more | ri| become large, because the
observed average transverse momenta are small (of order 2 0.4 GeV). One
should choose p such that ¢ in eq. (16) has about the same range in the |r;|
as F.

In order to generate random u according to eq. (17), it seems useful to
rewrite the components of u; as

(1) 2

u. = Mﬁzz_l , ul

i =u£2i, (i=1,...7’l—1),

We have then

n-1
& 1—1—[ dau; = u2n-3 exp (-pu2)du - dgy.3 £ ,

where d2y-3 § is the solid angle element in (2#-2)-dimensional space. The
random distribution of » will be achieved by adopting a uniform distribution
for the new variable

u
7= | v21=3 exp (-pv2)dv .
o
For the 5]', what is needed is a uniform distribution on the unit sphere of

(27-2)-dimensional space. A simple generation method for this distribution
is given in the appendix.
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We turn to the polar angles wq,... wy_9 in the space L,.-1, as intro-
duced in sect. 3. Their definition is obvious for #=3 and 4. For explicit cal-
culations when n > 4, a simple procedure consists in constructing orthogo-
nal coordinates @1, ... @y-1 in the space Ly-1, e.g. by means of the same
orthogonal matrix as used above

n-1 .
qi = 04 Qj+n 2 Q.
j=1
We then have
2 .
Qi=qm, Zn; =1, (G=1,...n-1).

Here, @ and g are the coordinates introduced in sect. 3, and the nj, con-
strained to be on the unit sphere of (n-1)-dimensional space, give an ex-
plicit realization of the polar angles wyq,... w,_9. For eq. (17) we need a
uniform distribution on this sphere. The construction given in the appendix
can be used.

As noted before, the function DR is strongly peaked when ¢; = 0 for a
pion. These peaks occur also in the function F9 introduced by our Monte
Carlo procedure. At very high energy it may become desirable to generate
more points in the region of such peaks. This can be achieved by generating
additional points on the unit sphere Z:nz =1 in the region where one or
more ¢q; = 0, modifying the function Fg correspondingly.

The author is indebted to Dr. K. Zalewski for valuable suggestions con-
cerning the Monte Carlo integration. Useful discussions with experimental
and theoretical colleagues, especially Drs. A. Bialas and W. Kittel, are
gratefully acknowledged.

APPENDIX
A. An explicit form for the matrix 045

For the orthogonal matrix Ojj, introduced in sect. 6, the following sim-
ple choice can be made

011=—021=2'%, 031...=05p1 =0,
013 = 092 = -} 032 = 62 , O42=...=0p2=0,
O1,p-1=...=Oy-1,n-1= -(n-1)"1 On,n-1= [”("'1)]_% )
Otp=... =Onn=n'%.

B. Generation of uniform distribution on unit spheve
We want to generate the distribution
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y o
dw = (1 -?xi)dxl coodwy, (18)

the cases of interest being for N = 4.
For N even, N = 2K, we define new variables through

1 1
X9j-1 =pj.cosg0j , x2j=p]? sing; , j=1,...K, (19)
0<pj=<1, 0=o9j=<27.
They give
N 9 K N K K
Exi =2 Pj TI dx; = 27 ]_[dpjdgoj ,
1 1 1 1
and consequently
K K
dw=2K601-23p) [dpdo, . (20)
1 7 T

The ¢; are independent variables, uniformly distributed on (0, 27). To gen-
erate the pj, one can take K-1 independent numbers oy,...0x_1, each be-
ing uniformly distributed on the interval (0,1). For each random choice,
order them according to

Osajlsojz...sojK_lsl,
and define p1,...pKg by
PLE% PR =% % PR =10y
The p so obtained obey the distribution law (20).

The treatment of eq. (18) for N odd (N = 2K+1) can easily be reduced to
the previous one. We define Pj, ®; by eq. (19) and we introduce new varia-
bles p]'- by

2, .
pj=(1—xN)pj, j=1,...K.

The intervals are now
0<pj<t1, 0<gj<2r.

The distribution (18) then becomes

K K
_ -K 1 l. , N. 2 K-].
dw = 27K 5(1 - ‘143 5} (I1 [dpj- de;)- (1- 2K axy
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The p}, @j are generated as the pj, @; were previously. For xp, one uses
a uniform distribution for the new variable

*N
= | (1-x2K-1qgx, Slsay<1.
(o]
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