A Dalitz Plot Analysis & Extraction of Spin Density Matrix Elements for $\omega \rightarrow 3\pi$ Decay

Chris Zeoli

Florida State University cpz11@my.fsu.edu

PWA Meeting

02 December 2015

Overview

- Goals of Analysis
- g12 Data for $\omega\to 3\pi$
 - Kinematics
 - Dalitz Plots
- Analysis
 - Fit Function in Brief
 - Decay Amplitude
 - Spin Density Matrix Elements (SDMEs)
 - Preliminary Results and Status

Next Steps

Introduction

$$\gamma p \rightarrow p \omega \rightarrow p 3\pi$$

Our Interest: $\omega \rightarrow 3\pi$ Decay

How does the ω resonance decay?

Example

FIG. 1: Isobar decomposition.

$$\omega \to \rho \pi \to 3\pi$$

Properties of the Decay

• Spectroscopic Notation for Mesons, $I^G J^{PC}$

• For
$$\gamma p
ightarrow p \omega
ightarrow p \pi^+ \pi^- \pi^0$$
,

$$\gamma, 0^{-}(1^{--})$$

 $p, 0^{-}(\frac{1}{2}^{+})$
 ω (782), 0⁻(1⁻⁻)

$$\pi^{\pm}(139.6),\,1^{-}(0^{-})\ \pi^{0}(134),\,1^{-}(0^{-+})$$

Additional Properties

Strong Decay Decay Width, $\Gamma^{exp}_{\omega \to 3\pi} = 7.57$ MeV (PDG) Branching Ratio, ~ 85%

Introduction

Main Goals of Analysis

• Extract SDMEs for the $\omega \rightarrow 3\pi$ decay.

- Fit a model for the $\omega \rightarrow 3\pi$ decay to data.
 - Working closely with JPAC, Igor Danilkin
- Fit via event-based, minimum log-likelihood method using AmpTools framework.
- Compare fits with the results of other models

Data	Total Events	Omega Mass, Background Subtracted
Data		9000
-data	8,200,000	
-genMC	20,000,000	6000 - Data
-accMC	2,000,000	
		2000
Average Acceptance $pprox~0.10$		0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 M _☉ (GeV)

g12 data covers *E_γ*:[1108 - 5400]MeV

• Consider *E*_γ:[1150 - 3800]MeV, *W*:[1770 - 2830]MeV

Dalitz Plot: Threebody Phase Space

Differential Decay Width

$$d\Gamma = rac{1}{(2\pi)^3} \; rac{1}{8M} \; \overline{|\mathcal{M}|^2} \; dE_1 dE_2$$

Defining $p_{ij} = p_i + p_j$ and $m_{ij}^2 = p_{ij}^2$

$$\Rightarrow m_{ij}^2 = (P - p_k)^2 = M^2 + m_k^2 - 2ME_k$$

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{M}|^2} dm_{12}^2 dm_{23}^2$$

The Dalitz Plot

Chris Zeoli (FSU)

 $\omega \rightarrow 3\pi$ Decay Analysis

02 December 2015 12 / 57

Chris Zeoli (FSU)

 $\omega \rightarrow 3\pi$ Decay Analysis

Dalitz Plot: X & Y Representation

Lorentz Invariant, Dimensionless Variables

$$X = \frac{\sqrt{3}(T_i - T_j)}{Q} \qquad \qquad Y = \frac{3T_k}{Q} - 1$$

Chris Zeoli (FSU)

 $\omega \rightarrow 3\pi$ Decay Analysis

g12, g11 Cross-Section Comparison

 $E\gamma$:[1550-2550]MeV, Zulkaida Akbar

Chris Zeoli (FSU)

 $\omega\,\rightarrow\,3\pi$ Decay Analysis

g12, g11 Cross-Section Comparison

 $E\gamma$:[2550-3550]MeV, Zulkaida Akbar

g12, g11 Cross-Section Comparison

 $\omega \to 3\pi$ Decay Analysis

JLAB-THY-14-1960

Dispersive Analysis of $\omega/\phi \rightarrow 3\pi, \pi\gamma^*$

I.V. Danilkin,^{1,*} C. Fernández-Ramírez,¹ P. Guo,^{2,3} V. Mathieu,^{2,3} D. Schott,⁴ M. Shi,^{1,5} and A. P. Szczepaniak^{1,2,3} (Joint Physics Analysis Center)

> ¹Center for Theoretical and Computational Physics, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 ²Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403 ³Physics Department, Indiana University, Bloomington, IN 47405 ⁴Department of Physics, The George Washington University, Washington, DC 20052 ⁵Department of Physics, Peking University, Beijing 100871, China (Dated: September 30, 2014)

The decays $\omega/\phi \rightarrow 3\pi$ are considered in the dispersive framework that is based on the isobar decomposition and sub-energy unitarity. The inelastic contributions are parametrized by the power series in a suitably chosen conformal variable that properly account for the analytic properties of the amplitude. The Dalitz plot distributions and integrated decay widths are presented. Our results indicate that the final state interactions may be sizable. As a further application of the formalism we also compute the electromagnetic transition form factors $\sigma (\omega/\phi \rightarrow \pi^{0}r)$.

arXiv:1409.7708v1 [hep-ph] (2014)

Illustration

FIG. 1: Isobar decomposition.

Isobar Model

FIG. 2: Crossed channel rescattering effects.

consequence of elastic unitarity requirement of model

Model

$$F(s) = \Omega(s) \left(\frac{1}{\pi} \int_{s_{\pi}}^{s_i} ds' \frac{\rho(s') t^*(s')}{\Omega^*(s')} \frac{\hat{F}(s')}{s'-s} + \Sigma(s) \right).$$
(31)

The Decay Amplitude arXiv:1409.7708v1 [hep-ph] (2014)

$$\Sigma(s) = \sum_{i=0}^{\infty} a_i \,\omega^i(s) \tag{29}$$

inelastic contribution (a' = "IgorParameter")

- PWA Fit Framework: AmpTools
 - Fit Method: Log Likelihood Method
 - Fitter: Parameter Float Method, ROOT Tminuit class based

• Fit Function: $\mathcal{I} = |\mathcal{T}|^2 |\mathcal{M}|^2$, where \mathcal{T} =Production Amp, \mathcal{M} =Decay Amp (J=1, P-Wave)

Factorization of the Fit Function

Squared Decay-Amp:

$$|\mathcal{M}|^2 = \sum_{\lambda\lambda'} \ \mathcal{H}^*_\lambda \ \rho_\lambda^{\lambda'} \ \mathcal{H}^\lambda = |\mathcal{F}|^2 \ \mathcal{W}_\rho(\theta,\phi), \quad \text{where}$$

 $\mathcal{F} = \mathsf{Reduced} \ \mathsf{Decay} \ \mathsf{Amp}$

 $\mathcal{W} =$ Angular Decay Distribution (Spin Density Distribution)

 $\rho_{\lambda\lambda'} =$ Spin Density Matrix Elements

Spin Density Distribution

Angular Decay Distribution

$$\mathcal{W}(heta, \phi,
ho(\omega)) = \mathcal{M}
ho(\omega)\mathcal{M}^{\dagger}$$

where
$$ho(\omega)={\cal T}
ho(\gamma){\cal T}^{\dagger}$$

Unpolarized Beam and Target

$$\mathcal{W}^{0}(\theta,\phi) \equiv \frac{3}{4\pi} \left[\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1) \cos^{2}\theta - \sqrt{2} \operatorname{Re}\rho_{10}^{0} \sin 2\theta \cos \phi - \rho_{1,-1}^{0} \sin^{2}\theta \cos 2\phi \right]$$

(The Schilling Equation)

Chris Zeoli (FSU)

 $\omega \to 3\pi$ Decay Analysis

Analysis: g12, g11 SDME comparison (unpolarized beam)

g12, g11 SDME comparison (unpolarized beam)

 $\omega
ightarrow 3\pi$ Decay Analysis

g12, g11 SDME comparison (unpolarized beam)

Chris Zeoli (FSU)

 $\omega
ightarrow 3\pi$ Decay Analysis

02 December 2015 27 / 57

g12, g11 SDME comparison (unpolarized beam)

 $\omega
ightarrow 3\pi$ Decay Analysis

Decay Amplitude Parameter (2Body), Wbin1800-2800

Decay Amplitude Parameter (3Body), Wbin1800-2800

Decay Amplitude Parameter (3Body), Wbin1800-2800

Using $d\sigma/dt$

PWA Meeting 12-02-15

Status Update

Decay Amplitude Parameter (3Body)

W:[1800 - 2800] MeV, Bin Widths: 100 MeV

Acceptance

W:[1800-2800] MeV, Bin Widths: 100 MeV

 $\omega\,\rightarrow\,3\pi$ Decay Analysis

Decay Amplitude Parameter (3Body)

W:[1800 - 2800] MeV, Bin Widths: 50 MeV

Acceptance

W:[1800-2800] MeV, Bin Widths: 50 MeV

Decay Amplitude Parameter (3Body)

W:[1800 - 1900] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Acceptance

W:[1800 - 1900] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Decay Amplitude Parameter (3Body)

W:[2100 - 2200] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Acceptance

W:[2100 - 2200] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Decay Amplitude Parameter (3Body)

W:[2400 - 2500] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Acceptance

 $W{:}[2400-2500]~\text{MeV},~-t{:}[100-2400]~\text{GeV}^2,~\text{Bin Widths:}~100~\text{GeV}^2$

Decay Amplitude Parameter (3Body)

W:[2700 - 2800] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Acceptance

 $W{:}[2700-2800]~\text{MeV},~-t{:}[100-2400]~\text{GeV}^2,~\text{Bin Widths:}~100~\text{GeV}^2$

Decay Amplitude Parameter (3Body)

W:[1800 - 1900] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

Acceptance

W:[1800 - 1900] MeV, -t:[100 - 2400] GeV², Bin Widths: 100 GeV²

- Try to eliminate energy dependence of IgorParameter
- Statistical and systematic error
 - Refit results which had large statistical error bars
 - Include statistical error bars on g11 SDME results
 - Include systematic error into analysis
- Refit IgorParameter using g12 cross-section and SDME's

Thank you

Backup Slides

Dalitz Plot Expansion

$$\begin{aligned} x &= \frac{\sqrt{3}}{Q}(T_1 - T_2) = \frac{\sqrt{3}(t - u)}{2M(M - 3\,m_\pi)}, \\ y &= \frac{3\,T_3}{Q} - 1 = \frac{3(s_c - s)}{2M(M - 3m_\pi)}. \end{aligned} \tag{38}$$

Lorentz Invariant Variables

Expected Dalitz Plot, IgorParameter > 3

$$\begin{array}{rcl} x &=& \sqrt{z}\cos\theta\\ y &=& \sqrt{z}\sin\theta \end{array}$$

$$|F_{par}(z,\vartheta)|^2 = |N|^2 \left(1 + 2\alpha z + 2\beta z^{3/2} \sin(3\vartheta) + 2\gamma z^2 + 2\delta z^{5/2} \sin(3\vartheta) + \mathcal{O}(z^3)\right)$$
(40)

Dalitz Plot Amplitude Expansion

Chris Zeoli (FSU)

 $\omega \rightarrow 3\pi$ Decay Analysis

Dalitz Plot Parameter Comparison

$$|F_{par}(z,\vartheta)|^{2} = |N|^{2} \left(1 + 2\alpha z + 2\beta z^{3/2} \sin(3\vartheta) + 2\gamma z^{2} + 2\delta z^{5/2} \sin(3\vartheta) + \mathcal{O}(z^{3})\right)$$
(40)

TABLE I: Dalitz Plot parameters and $\sqrt{\tilde{\chi}^2}$ of the polynomial parametrization (40) for $\omega \to 3\pi$. In addition to our results we also show the selected results from Niecknig et al. [37] (dispersive study with incorporated crossed-channel effects) and Terschlusen et al. [19] (Lagrangian based study with the pion-pion rescattering effects).

	$\alpha \times 10^3$	$\beta \times 10^3$	$\gamma \times 10^3$	$\delta \times 10^3$	$\sqrt{\bar{\chi}^2} \times 10^3$
This paper $(\hat{F} = 0)$	136	-	-	-	3.5
This paper (full)	94	-	-	-	3.2
Niecknig et al. [37]	8496	-	-	-	0.91.1
Terschlusen et al. [19]	202	-	-	-	6.6
This paper $(\hat{F} = 0)$	125	30	-	-	0.74
This paper (full)	84	28	-	-	0.35
Niecknig et al. [37]	7484	2428	-	-	0.0520.078
Terschlusen et al. [19]	190	54	-	-	2.1
This paper $(\hat{F} = 0)$	113	27	24	-	0.1
This paper (full)	80	27	8	-	0.24
Niecknig et al. [37]	7381	2428	36	-	0.0380.047
Terschlusen et al. [19]	172	43	50	-	0.4
This paper $(\hat{F} = 0)$	114	24	20	6	0.005
This paper (full)	83	22	1	14	0.079
Niecknig et al. [37]	7483	2124	02	78	0.0120.011
Terschlusen et al. [19]	174	35	43	20	0.1

The Decay Amplitude

$$F(s) = \Omega(s) \left(\frac{1}{\pi} \int_{s_{\pi}}^{s_i} ds' \frac{\rho(s') t^*(s')}{\Omega^*(s')} \frac{\hat{F}(s')}{s'-s} + \Sigma(s) \right).$$
(31)

KT Amplitude

$$\Sigma(s) = \sum_{i=0}^{\infty} a_i \,\omega^i(s) \tag{29} \qquad \omega(s) = \frac{\sqrt{s_i - s_E} - \sqrt{s_i - s}}{\sqrt{s_i - s_E} + \sqrt{s_i - s}} \tag{30}$$

inelastic contribution

dispersion relation

Comparing JPAC & Dalitz Expansion Amplitude Parameters

$$2\alpha \propto a' = 2\frac{a_1}{a_0} =$$
 "IgorParameter"

Chris Zeoli (FSU)

 $\omega \rightarrow 3\pi$ Decay Analysis