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1 B4 model(Nov 14 ,2013)

To illustrate the B5 model, we will begin with the G. Veneziano’s Narrow
resonance model[1], which is also called B4 model. In 1968, G. Veneziano
was the first one wrote down the Regge behavior amplitude for πω → ππ
with a Beta function,

T = εµνρσϵ
µ
ωp

ν
1p

ρ
2p

σ
3 · A(s, t, u),

A(s, t, u) =
β

π
[B(1− α(t), 1− α(s)) +B(1− α(t), 1− α(u)) +B(1− α(s), 1− α(u))],

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (1)

where β is a constant.
The amplitude can be written,

A(s, t, u) =
β

Γ(α(t))sin(πα(t))

sin(π(α(s) + α(t))

sin(πα(s))

Γ(α(s) + α(t)− 1)

Γ(α(s))
+ ....,

∼ β(t)

sin(πα(t))

1− cos(π(α(t))

sin(πα(s))
[α(s)]α(t)−1, (2)

where β(t) = β
Γ(α(t))

. When s → ∞, it has A ∝ (α(s))α(t)−1, which is the
Regge behavior.

The Amplitude has following properties:
1, Regge Behavior
2, Crossing symmetries
3, Infinity number of poles
4, Duality
5, Ploynimial residues
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6, positive widths (only B4 model was proved)
7, Violation the unitarity.

Consequently, Lovelace[2] applied it to π+π− elastic scattering. The am-
plitude was written with

A(s, t) = −β
Γ(1− α(s))Γ(1− α(t))

Γ(1− α(s)− α(t))
+ γ

Γ(1− α(s))Γ(1− α(t))

Γ(2− α(s)− α(t))
, (3)

and for the isospin amplitudes

A0 =
3

2
[A(s, t) + A(s, u)]− 1

2
A(t, u),

A1 = A(s, t)− A(s, u),

A2 = A(t, u). (4)

For ρ trajectory, an imaginary part was considered

αρ = 0.483 + 0.885s+ i0.28
√

s− 4m2
π. (5)

The scattering length was given by this amplitude

a0 = 0.395β, a2 = −0.103β. (6)

The ratio was comparable with Weinberg’s value. For 3-π final states, such
as p̄n → π±π∓π−, the amplitude were

A(X± → π±π±π∓) = A(s, t),

A(X± → π±π0π0) = A(X0 → π+π−π0) = A(t, u)− A(s, t)− A(s, u),

A(X0 → 3π0) = A(s, t) + A(s, u) + A(t, u). (7)

The Dalitz Plot was also fit well with this amplitude. Shapiro[3] had proved
all the widthes are positive. In Ref. [4], a dual model with back ground was
used,

A(s, t) = Σ
n,m

Cnm
Γ(n− αs)Γ(m− αt)

Γ(n+m− αs − αt)
, (8)

n,m = 1, 2 and an additional term C30. This amplitude can be also consist
of the p̄n → π+π−π− data including the angular distribution of ππ.

About the duality–A sum of ploes in one channel diverge to produce
poles in overlapping channels, we will not explain it here clearly which can
be viewed in the section II. D in the Ref. [5].
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2 B5 model(Nov 15 ,2013)

2.1 Two ways of extending the B4 to B5

Several authors has generalized the B4 model to the Bn model. However,
they are mainly based on two different ways. One is from Ruegg[6], and the
other is based on Hopkinson[8].

2.1.1 Ruegg’s B5 model

The Ruegg amplitude is a direct generalization of B4 model to Bn model.

B4(−α(s),−α(t)) =

∫ 1

0

duu−α(s)−1(1− u)−α(t)−1 →

B5 =

∫ 1

0

∫ 1

0

duiduj

1− uiuj

u−α12−1
1 u−α23−1

2 u−α34−1
3 u−α45−1

4 u−α51−1
5 . (9)

The variable ui is constrained by,

ui = 1− ui−1ui+1, i = 1, ..., 5, u6 = u1, u0 = u5. (10)

Consider the process 1 + 2 → 3 + 4 + 5, it is expressed with

B5 =

∫ 1

0

du1

∫ 1

0

du4u
−α12−1
1 u−α45−1

4 (1− u1

1− u1u4

)−α23−1(1− u1u4)
−α15−2.(11)

In the high energy limit(s34, s45 → ∞), by changing the variables

u1 = e
−xy

α34α45 , u4 = e
y

α45 , (12)

the amplitude can be rewritten to

B5 = (−α34)
α23(−α45)

α15g(K, s23, s15),

g(K, s23, s15) = (a)α23+α15

∫ ∞

0

dx

∫ ∞

0

dyx−α23−1y−α15−1e−x−y+−xy
aK ,(13)

where a is the slope of the trajectory, K(x′, y′) = 1−e−x′y′

1−e−x′y′−y′
1
x′ and x′ =

−x/α23, y
′ = −y/α45. It has exactly the double Regge limit behavior. Based

on this double Regge limit amplitude, the authors in Ref. [7] have investi-
gated the π−p → KK̄n data. Dalitz Plots are also given by them therein.
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2.1.2 Hopkinson’s B5 model

Hopkinson and Plahte start from another way to generate the B4 model[8],

BN(x) =
∞∑

kiN−1=0

{
N−3∏
i=2

(−1)kiN
(
zi,N−1

ki,N−1

)
}B4(xN−2,N−1, xN−1,N+

∑N−3
i=2 kiN−1

)BN−1(x
′),(14)

where zij = xij − xi+1,j − xi,j−1 + xi+1,j−1 and xij = −αij(sij). For N = 5,
the amplitude is

B5(x) =
∞∑
k=0

(−1)k
(
z24
k

)
B4(x34, x45 + k)B4(x12 + k, x23) (15)

= B4(x34, x45)B4(x12, x23)3F2(−x12 + x34 + x45, x13, x25;x45 + x25, x13 + x34; 1),

where

3F2(a, b, c; d, e; z) =
∞∑
k=0

Γ(a+ k)Γ(b+ k)Γ(c+ k)Γ(d)Γ(e)

Γ(a)Γ(b)Γ(e)Γ(d+ k)Γ(e+ k)

zk

k!
.

Bialas and Pokorski[9] investigated the double Regge limie and the single
reggelimit from Eq. (15). The a + b → 1 + 2 + 3 is used by them, and the
amplitude is

B5 = B4(12, A1)B4(23, B3)3F2(−AB + 12 + 23, A1, B3; 12 + A1, 23 +B3),(16)

where A1 = −αA1, and so on.
When s12 and s23 is large, the amplitude shows a double Regge limit,

B5 = B4(AB,A1)B4(23, B3− A1) +B4(AB,B3)B4(12, A1−B3), (17)

and in the very high energy region of s12 and s23, the amplitude is approxi-
mate to

B5 = B4(12, A1)B4(23, B3). (18)

The single Regge limit is given when s12 or s23 goes large, for example when
s23 is fixed, the amplitude is

B5 = B4(AB,A1)R23, (19)

R23 =
∞∑

m=0

1

23 +m

(−1)m

m!

Γ(B3)

Γ(B3−m)
F (A1,−m;B3−m;

13

AB
).

Jones and Wyld[10] have examined the single Regge limit with the above
equation to p̄n → 3π. However, the result shows that the amplitude did not
match the data very well.
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2.2 The connection between single regge limit and the
double regge limit(Dec 17 ,2013)

Bialas and Pokorski investigated the double Regge limie and the single regge-
limit. The a + b → 1 + 2 + 3 is used by them, and the double Regge limit
amplitude Fig. 7(d) is

B5 = B4(AB,A1)B4(23, B3− A1) +B4(AB,B3)B4(12, A1−B3), (20)

and in the high energy region of s12 and s23, the amplitude should be

B5 ∼ B4(12, A1)B4(23, B3) ∼ (12)−A1(23)−B3Γ(A1)Γ(B3), (21)

where A1 = −αA1, and B3 = −αB3.
The single Regge limit is given when s12 or s23 goes to large energy, for

example when s23 is fixed Fig. 7(b), the amplitude is

B5 = B4(AB,A1)B4(23, B3− A1)F (A1, 23; 1 + A1−B3;
12

AB
) (22)

+B4(AB,B3)B4(12, A1−B3)F (B3, 23 +B3− A1; 1 + B3− A1;
12

AB
),

= B4(AB,A1)B4(23, B3)F (A1, 23;B3 + 23;
13

AB
). (23)

We can prove that when s12 and s23 go to large area, this single regge limit
can become double regge limit.

B5 → B4(AB,A1)B4(23, B3− A1)F (A1; 1 + A1−B3;
12 · 23
AB

) (24)

+B4(AB,B3)B4(12, A1−B3)F (B3; 1 +B3− A1;
12 · 23
AB

)

→ Γ(A1)(AB)−A1Γ(B3− A1)(23)A1−B3Γ(1 + A1−B3)

Γ(1−B3)
(k)−A1

+Γ(B3)(AB)−B3Γ(A1−B3)(12)B3−A1Γ(1 +B3− A1)

Γ(1− A1)
(k)−B3

∼ Γ(A1)Γ(B3)(12)−A1(23)−B3,

where k = 12·23
AB

and F (a, c, z)
z→−∞→ Γ(c)

Γ(c−a)
(−z)−A are used.

2.3 The phase space of five particles interaction(Nov
27 ,2013)

For a+ b → 1 + 2 + 3 system, the distribution of s12 and s23 is given by[7]:

d2σ

ds12ds23
=

1

(4π)2λ(s,m2
a,m

2
b)

∫ ∫
dta1dtb3√

−∆4

|A(s12, s23, ta1, tb3)|2, (25)
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where λ(s,m2
a,m

2
b) is

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx, (26)

and ∆4 is the symmetric determinant with

∆4 =

∣∣∣∣∣ m2
a

1
2
(s − m2

a − m2
b)

1
2
(−ta1 + m2

a + m2
1)

1
2
(s − s12 + tb3 − m2

b)
1
2
(s − m2

a − m2
b) m2

b
1
2
(s − s23 + ta1 − m2

a) 1
2
(−tb3 + m2

a + m2
3)

1
2
(−ta1 + m2

a + m2
1)

1
2
(s − s23 + ta1 − m2

a) m2
1

1
2
(s − s12 − s23 + m2

2)
1
2
(s − s12 + tb3 − m2

b)
1
2
(−tb3 + m2

a + m2
3)

1
2
(s − s12 − s23 + m2

2) m2
3

∣∣∣∣∣,(27)
which give the boundary of the s12, s23, ta1 and tb3[11]. With fixed ta1 and
tb3, we can have the Dalitz plot of s12 and s23.

2.4 Dalitz Plots of the B5 model(Nov 22 ,2013)

Here we try to use the two different amplitudes from the above section to
investigate the single and double Regge limits of the γP → K+K−P process.
One is the Hopkinson’s amplitude, and the other one is Chan Hong-Mo’s
amplitude in Ref. [7] which is a modified Ruegg’s amplitude.

The intermediated states are chosen to beρ,K∗ and Σ, and the masses of
them are mp = 0.983GeV, mK = 0.493GeV, mγ = 0GeV. The trajectories
are chhosen to be

αtb3 = 0.483 + 0.885s+ 0.1i, αta1 = 0.3 + 1.0s+ 0.12i, (28)

αsab = 0.5 + 0.9si, αs12 = 0.5 + 0.9s+ 0.05i, αs23 = −0.2 + 0.9s+ 0.23i

sab is fixed to be 20.1GeV 2. The Dalitz Plots are showen in Fig. 1.

2.5 Generalized B5 model with kinematic factors(Nov
27 ,2013)

When the interaction includes baryons, there always has a kinematic factors.
The amplitude of five-point function with π−P → K0K̄−P in Fig. 6 generally
has the following structure[12, 13, 14], when the intermediate states are spin-
1 mesons or P-wave baryons.

A = c · ϵµνρσpµπpνK̄p
ρ
Kp

σ
p̄ ×B5(1− αK∗ , 1− αA,

3

2
− αY ∗ , 1− αω,

3

2
− α∆),(29)

where c is a normalization constant.
For a photoproduction case in Fig. 7(a), the amplitude should be:

A = c · ϵµνρσεµpνK+p
ρ
K−p

σ
p̄ ×B5(1− αK∗ , 1− αA,

3

2
− αY ∗ , 1− αω,

3

2
− αN∗),(30)
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Figure 1: (a), (b)the double Regge limits of Eq. 20, (a) with t1 =
{−3,−6,−9}, t2 = {−3,−6,−9}, (b) small t1, t2, t1 = −0.8 and t2 = −1.4.
The blue circle in the plot is the real boundary of m12 and m23. (c)the dou-
ble Regge limits of Eq. 18(t1 = t2 = −6) (d), the single Regge limit of
Eq. 22 with fixed s23(left) and fixed s12(right), and t1 = −6 = t2 = −6(up);
t1 = −0.3,−0.8,−1.4, t2 = −0.8(down); (e), the double Regge limits from
the Ref.[7](Logarithmic Plot).
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(a)

(b)

Figure 2: a, the double Regge limit with larger region, sab = 10000, t1 =
−30,−300,−3000, t2 = −30,−300,−3000; b)the double Regge limits with
larger region, sab = 10000, t1 = −0.3,−0.8,−1.4, t2 = −0.8.
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Figure 3: a), Boundary of tb3 and ta1, t1 = 6000, 10, 3000, 4000, t2 =
10, 6000, 3000, 4000; b), The behavior of single regge and double regge limits:
they have the same behavior at the central region.
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(a)

(b)

Figure 4: The Dalitz Plots by Fortran code: a),the single regge limit with
fixed s23; b)the single regge limit with fixed s12.
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Figure 5: The Dalitz Plots by Fortran code: a), the double Regge limit

π−

P

K−

K̄0

P

∆

K∗

ρ, A2

Y ∗

1

ω

Figure 6: πP → K−K̄0P
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ω
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(d)

;

Figure 7: a, a general diagram of γP → K+K−P ; b,c,d, including the
particular intermediate states in each diagram.
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where εµ is the polarization vector of the photon. One only needs to change
the πµ to the photon ploarization vector εµ since the intermediate states are
same as π production.

The case of Fig. 7(b), Fig. 7(c) and Fig. 7(d) are the single Regge limits
and the double Reggge limit, which correspond different energy regions of
the Dilatz Plot. The relation between them are still being researched.
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