
A Dalitz Plot Analysis of ω → 3π Decay

Chris Zeoli

Florida State University

cpz11@my.fsu.edu

June 4, 2015

Chris Zeoli (FSU) Dalitz Analysis of ω → 3π June 4, 2015 1 / 48



Overview

Goals

G12 Data

Fit Function in Brief

Analysis

Next Steps

Chris Zeoli (FSU) Dalitz Analysis of ω → 3π June 4, 2015 2 / 48



Goals

Main Goal

Fit a modified Khuri-Treiman (KT) Model for the ω → 3π decay.

Fit the decay amplitude via event-based likelihood fits using
AmpTools framework.

Compare fit parameters with known results from other models
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CLAS G12 Data

Data Total Events

-data 8,200,000
-genMC 14,000,000
-accMC 1,500,000

Average Acceptance ≈ 0.107  (GeV)ωM
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G12 data covers incoming photon energy range Eγ :[1150-5400]MeV

Have G12 x-section Eγ :[1150-3800]MeV, extending to 5400MeV,
need G12 SDME’s still

We use G11 x-section, SDME’s data; range Eγ :[1107.4-3828.9]MeV

We consider bins in range Eγ :[1150-3800]MeV
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G12, G11 Cross-Section Comparison
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Eγ:[1500-2010]MeV, Zulkaida Akbar
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G12, G11 Cross-Section Comparison
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G12, G11 Cross-Section Comparison
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Paper for Model

JLAB-THY-14-1960

Dispersive Analysis of ω/φ→ 3π, πγ∗

I.V. Danilkin,1, ∗ C. Fernández-Ramı́rez,1 P. Guo,2, 3 V. Mathieu,2, 3 D. Schott,4 M. Shi,1, 5 and A. P. Szczepaniak1, 2, 3

(Joint Physics Analysis Center)
1Center for Theoretical and Computational Physics,

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
2Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403

3Physics Department, Indiana University, Bloomington, IN 47405
4Department of Physics, The George Washington University, Washington, DC 20052

5Department of Physics, Peking University, Beijing 100871, China
(Dated: September 30, 2014)

The decays ω/φ → 3π are considered in the dispersive framework that is based on the isobar
decomposition and sub-energy unitarity. The inelastic contributions are parametrized by the power
series in a suitably chosen conformal variable that properly account for the analytic properties of
the amplitude. The Dalitz plot distributions and integrated decay widths are presented. Our results
indicate that the final state interactions may be sizable. As a further application of the formalism
we also compute the electromagnetic transition form factors of ω/φ→ π0γ∗.

PACS numbers: 13.20.Jf, 11.55.Fv, 13.25.Jx, 13.75.Lb

I. INTRODUCTION

Three particle production plays an important role in
hadron physics. In the past, analysis of the three-pion
spectrum led to the discovery of several prominent meson
resonances [1]. With high precision data already avail-
able, for example from the COMPASS Collaboration [2]
and expected from Jefferson Lab [3], in the near future it
will be possible to further resolve the three pion spectrum
and identify new resonances that do not necessarily fit the
quark model template. Indeed, in the charmonium spec-
trum several candidates for non-quark model resonances
have recently been reported [4, 5]. Several of these were
observed in decays to three-particle final states. Proper
description of interactions in the three-particle system is
also required to advance lattice gauge computations of
scattering amplitudes [6–9].

Because of large production yields, hadron systems are
also an important laboratory for studies of weak interac-
tions, symmetry tests and searches for physics beyond the
Standard Model [10, 11]. Sensitivity to weak interactions
demands high precision in determination of hadronic am-
plitudes. Near threshold there are first principle con-
straints that can help in this process. These low-energy
constraints include, for example, chiral symmetry, par-
tial wave and effective range expansions, and unitarity.
In general, however, it is impossible to construct a single
analytical function that describes a reaction amplitude
in the entire range of kinematical variables and satisfies
all of the constraints imposed by the relativistic S-matrix
theory. Nevertheless, analyticity is a powerful constraint
that enables to connect different regions of the spectrum
e.g. constrain resonance parameters by the behavior of

∗Electronic address: danilkin@jlab.org

the amplitude elsewhere, including both the near thresh-
old and the high-mass regions.

In this paper we focus on the analysis of three pion
production at low energies in particular from decays of
the light-vector, isoscalar mesons, the ω and the φ. At
low energies, chiral perturbation theory (χPT) serves as
a powerful constraint on amplitudes involving the light
pseudo-scalar mesons [12, 13]. χPT has been applied to
the three pion production from the η decays [14, 15]. In
the case of ω/φ→ 3π, χPT can be extended by including
light vector mesons as additional degrees of freedom [16–
19]. In a perturbative study, germane to an effective field
theory, unitarity is only satisfied order-by-order in the
loop expansion. On the other hand, from the perspective
of the S-matrix theory, unitarity is the key feature that
constraints singularities of the reaction amplitude and
therefore the amplitude itself. For this reason there has
been a lot of interest in application of dispersion relations
to low energy production of pseudoscalar mesons [20–25].

Dispersive methods have been used in description of
relativistic three body decays in the past [26–29]. For
example, the decay η → 3π [30–35], is of interest because
it is sensitive to isospin breaking, which in QCD origi-
nates from the mass difference between the up and down
quarks. Dispersive analysis of ω decay was performed in
[36] and more recently in [37]. It is of interest because it
sheds light on the vector mesons dominance and the in-
terplay between the QCD dynamics, which is believed to
be responsible for the vector meson formation and its de-
cay characteristics restricted by unitarity and long-range
interactions.

In relativistic S-matrix theory a function connecting
four external particles describes reaction amplitudes of
all processes related by crossing, i.e. the three 2 → 2
scattering channels and, if kinematically allowed, a de-
cay channel 1→ 3. Therefore, unitary constraints ought
to be considered in all physical channels connected by the
same analytical function. With the emphasis on unitar-
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FIG. 1: Isobar decomposition.

FIG. 2: Crossed channel rescattering effects.

ity, the natural starting point for amplitude construction
is the partial wave expansion. At low energies, it is ex-
pected that only low partial waves are significant and
therefore the infinite partial waves series can be trun-
cated to a finite sum. We refer to such an approximation
as the isobar model [38]. The diagrams representing a
truncated partial waves series, a.k.a the isobar decompo-
sition are shown in Fig.1.

Implementation of unitarity on a truncated set of par-
tial waves leads to the so called Khuri-Treiman (KT)
equations [26, 27, 39]. In the the KT framework elas-
tic unitarity in the three crossed channels is used to de-
termine the discontinuity of partial waves which are then
reconstructed using a Cauchy dispersion relation. Conse-
quently additional diagrams contribute to the amplitude,
see Fig. 2. Since, as discussed above, the model truncates
the number of partial waves, it is intrinsically restricted
to low energies. In other words the high-energy behavior
in the KT framework is arbitrary. Mathematically, this
translates into an arbitrariness in choosing the bound-
ary condition for the solution of an integral equation,
which follows from the dispersion relation. It is therefore
more appropriate to consider the KT framework as a set
of constrains on partial wave equations. Furthermore,
above threshold of production of inelastic channels the
KT amplitudes will couple to other open channels. Any
scheme that tries to reduce the sensitivity of the elastic
KT equations to the high-energy contributions in dis-
persion integrals should therefore take into account the
change in the analytical properties of the partial wave
amplitudes above the inelastic open channels. A novel
implementation of this feature within the KT framework
is the main new ingredient of the approach presented in
this paper.

In previous works, in order to suppress sensitivity to
the unconstrained high-energy region, subtracted disper-
sion relations were used [33, 34, 37]. Moreover, KT equa-
tions depend on the elastic 2→ 2 scattering amplitudes.
The ππ → ππ amplitudes needed for analysis of ω/φ
decays have been studied in Ref. [20]. These studies con-
strain the amplitudes only up to certain center of mass

energy (somewhat above K̄K threshold) and this adds
further uncertainty into the KT framework. For exam-
ple, in previous analyses of the vector meson decays the
ππ phase shift was extended beyond the elastic region
with a specific model [37]. In this paper we present an
alternative to the subtraction procedure, which not only
suppresses the high-energy contributions to the disper-
sive integrals, but also takes into account the change in
the analytical properties induced by the opening of in-
elastic channels. Specifically, we split the dispersive in-
tegral into elastic and inelastic parts, and parameterize
the latter in terms of an appropriately chosen conformal
variable.

The paper is organized as follows. In the next section
we summarize the derivation and main features of the KT
framework as applied to the vector meson decays. The
discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive re-
lation are discussed in Sections III and IV. The numerical
analysis of ω/φ→ 3π is presented in Section V A. In Sec-
tion V B we consider the electromagnetic (EM) transition
form factors of ω/φ → π0γ∗ as a further application of
our formalism. Summary and outlook are presented in
Section VI.

II. PARTIAL WAVE OR ISOBAR
DECOMPOSITION

The matrix element for the three pion decay of a vector
particle is given in terms of a helicity amplitude Habc

λ ,

〈πa(p1)πb(p2)πc(p3) |T |V (pV , λ)〉 =

= (2π)4 δ(pV − p1 − p2 − p3)Habc
λ . (1)

Here pV and λ are the momentum and helicity of the vec-
tor particle, V = ω/φ in our case, p1, p2, p3 are the mo-
menta of outgoing pions with a, b, c denoting their Carte-
sian isospin indices. The Lorentz-invariant Mandelstam
variables are defined by s = (pV − p3)2, t = (pV − p1)2,
u = (pV − p2)2 and satisfy the relation

s+ t+ u = M2 + 3m2
π . (2)

The helicity amplitude Habc
λ can be expressed in terms

of a single scalar function of the Mandelstam variables,
since Lorentz and parity invariance imply that,

Habc
λ = i εµναβ ε

µ(pV , λ) pν1 p
α
2 p

β
3

P 1
abc√
2
F (s, t, u) , (3)
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ity, the natural starting point for amplitude construction
is the partial wave expansion. At low energies, it is ex-
pected that only low partial waves are significant and
therefore the infinite partial waves series can be trun-
cated to a finite sum. We refer to such an approximation
as the isobar model [38]. The diagrams representing a
truncated partial waves series, a.k.a the isobar decompo-
sition are shown in Fig.1.

Implementation of unitarity on a truncated set of par-
tial waves leads to the so called Khuri-Treiman (KT)
equations [26, 27, 39]. In the the KT framework elas-
tic unitarity in the three crossed channels is used to de-
termine the discontinuity of partial waves which are then
reconstructed using a Cauchy dispersion relation. Conse-
quently additional diagrams contribute to the amplitude,
see Fig. 2. Since, as discussed above, the model truncates
the number of partial waves, it is intrinsically restricted
to low energies. In other words the high-energy behavior
in the KT framework is arbitrary. Mathematically, this
translates into an arbitrariness in choosing the bound-
ary condition for the solution of an integral equation,
which follows from the dispersion relation. It is therefore
more appropriate to consider the KT framework as a set
of constrains on partial wave equations. Furthermore,
above threshold of production of inelastic channels the
KT amplitudes will couple to other open channels. Any
scheme that tries to reduce the sensitivity of the elastic
KT equations to the high-energy contributions in dis-
persion integrals should therefore take into account the
change in the analytical properties of the partial wave
amplitudes above the inelastic open channels. A novel
implementation of this feature within the KT framework
is the main new ingredient of the approach presented in
this paper.

In previous works, in order to suppress sensitivity to
the unconstrained high-energy region, subtracted disper-
sion relations were used [33, 34, 37]. Moreover, KT equa-
tions depend on the elastic 2→ 2 scattering amplitudes.
The ππ → ππ amplitudes needed for analysis of ω/φ
decays have been studied in Ref. [20]. These studies con-
strain the amplitudes only up to certain center of mass

energy (somewhat above K̄K threshold) and this adds
further uncertainty into the KT framework. For exam-
ple, in previous analyses of the vector meson decays the
ππ phase shift was extended beyond the elastic region
with a specific model [37]. In this paper we present an
alternative to the subtraction procedure, which not only
suppresses the high-energy contributions to the disper-
sive integrals, but also takes into account the change in
the analytical properties induced by the opening of in-
elastic channels. Specifically, we split the dispersive in-
tegral into elastic and inelastic parts, and parameterize
the latter in terms of an appropriately chosen conformal
variable.

The paper is organized as follows. In the next section
we summarize the derivation and main features of the KT
framework as applied to the vector meson decays. The
discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive re-
lation are discussed in Sections III and IV. The numerical
analysis of ω/φ→ 3π is presented in Section V A. In Sec-
tion V B we consider the electromagnetic (EM) transition
form factors of ω/φ → π0γ∗ as a further application of
our formalism. Summary and outlook are presented in
Section VI.

II. PARTIAL WAVE OR ISOBAR
DECOMPOSITION

The matrix element for the three pion decay of a vector
particle is given in terms of a helicity amplitude Habc

λ ,

〈πa(p1)πb(p2)πc(p3) |T |V (pV , λ)〉 =

= (2π)4 δ(pV − p1 − p2 − p3)Habc
λ . (1)

Here pV and λ are the momentum and helicity of the vec-
tor particle, V = ω/φ in our case, p1, p2, p3 are the mo-
menta of outgoing pions with a, b, c denoting their Carte-
sian isospin indices. The Lorentz-invariant Mandelstam
variables are defined by s = (pV − p3)2, t = (pV − p1)2,
u = (pV − p2)2 and satisfy the relation

s+ t+ u = M2 + 3m2
π . (2)

The helicity amplitude Habc
λ can be expressed in terms

of a single scalar function of the Mandelstam variables,
since Lorentz and parity invariance imply that,

Habc
λ = i εµναβ ε

µ(pV , λ) pν1 p
α
2 p

β
3

P 1
abc√
2
F (s, t, u) , (3)

consequence of elastic unitarity
requirement of model
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FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω′(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
∞∑

i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
√
si − s

(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

(
1

π

∫ si

sπ

ds′
ρ(s′) t∗(s′)

Ω∗(s′)
F̂ (s′)
s′ − s + Σ(s)

)
.

(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.

In Eq. (31) there is no need for subtractions in the dis-
persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.

Besides F (s), the problem with the determination of
inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp

(
s

π

∫ si

sπ

ds′

s′
δ(s′)
s′ − s

)
, (32)
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FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω′(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
∞∑

i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
√
si − s

(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

(
1

π

∫ si

sπ

ds′
ρ(s′) t∗(s′)

Ω∗(s′)
F̂ (s′)
s′ − s + Σ(s)

)
.

(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.

In Eq. (31) there is no need for subtractions in the dis-
persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.

Besides F (s), the problem with the determination of
inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp

(
s

π

∫ si

sπ

ds′

s′
δ(s′)
s′ − s

)
, (32)

inelastic contribution
(a0 = IgorParameter)
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FIG. 6: The Dalitz plots for ω → 3π (left-hand panel) and φ → 3π (right-hand panel) decays. The distributions are divided
by the p-wave phase space P and normalized to 1 at x = y = 0. This is a parameter free result, because we kept only one term
in the conformal expansion (29) which is responsible for the overall normalization. See main text for details.

TABLE I: Dalitz Plot parameters and
√
χ̄2 of the polynomial parametrization (40) for ω → 3π. In addition to our results

we also show the selected results from Niecknig et al. [37] (dispersive study with incorporated crossed-channel effects) and
Terschlusen et al. [19] (Lagrangian based study with the pion-pion rescattering effects).

α× 103 β × 103 γ × 103 δ × 103
√
χ̄2 × 103

This paper (F̂ = 0) 136 - - - 3.5

This paper (full) 94 - - - 3.2

Niecknig et al. [37] 84...96 - - - 0.9...1.1

Terschlusen et al. [19] 202 - - - 6.6

This paper (F̂ = 0) 125 30 - - 0.74

This paper (full) 84 28 - - 0.35

Niecknig et al. [37] 74...84 24...28 - - 0.052...0.078

Terschlusen et al. [19] 190 54 - - 2.1

This paper (F̂ = 0) 113 27 24 - 0.1

This paper (full) 80 27 8 - 0.24

Niecknig et al. [37] 73...81 24...28 3...6 - 0.038...0.047

Terschlusen et al. [19] 172 43 50 - 0.4

This paper (F̂ = 0) 114 24 20 6 0.005

This paper (full) 83 22 1 14 0.079

Niecknig et al. [37] 74...83 21...24 0...2 7...8 0.012...0.011

Terschlusen et al. [19] 174 35 43 20 0.1

postpone the comprehensive data analysis to the future
and for now only consider the application to electromag-
netic (EM) transition form factors of ω/φ. In partic-
ularly, the transition ω → πγ∗ is of interest since the
existing data in the time-like region seems to be incom-
patible with the vector meson dominance model (VMD)
[60, 61].

B. ω/φ→ πγ∗

In this section we discuss the EM transition form fac-
tors of the ω and φ mesons. The Dalitz decay of the
vector mesons into pion and a lepton pair

〈π0(p0) l+(p+) l−(p−) |T |V (pV , λ)〉 =

(2π)4 δ(pV − p0 − p+ − p−)HV π , (42)

Expected Dalitz Plot
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V. NUMERICAL RESULTS

A. ω/φ→ 3π

We solve the integral equation in Eq.(31) by numerical
iteration 3. The convergence is fast, typically after three
to four iterations, no significant variations in the solution
are observed. From the amplitude, it is straightforward
to compute the Dalitz plot distribution, the partial decay
and the total, 3π decay widths, [1]

d2Γ

ds dt
=

1

(2π)3

1

32M3

1

3
P (s, t) |F (s, t, u)|2 , (37)

where P (s, t) = φ(s, t)/4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that fol-
low, the conformal expansion in Eq. (29) is truncated at

0th order i.e. only a constant term is kept and this is
the only free parameter of the model. It is fixed to repro-
duce the measured 3π decay width for ω and φ, which
are Γexpω→3π = 7.57 MeV and Γexpφ→3π = 0.65 MeV, respec-

tively [1]. Since the integral equation is linear in F (s),
the one parameter that is fitted is responsible for the
overall normalization, while the Dalitz plot distribution
is only affected by higher order terms in Σ(s).

In Fig. 5 we show the solution of the integral equa-
tion (31) together with the invariant mass distribution.
The significance of the three-body effects, given by the
cross-channel terms, is accessed by keeping or eliminat-
ing F̂ from the discontinuity relation. In either case Σ(s)
is represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of
the crossed-channels for ω → 3π is less significant than
for φ → 3π. In both cases, the invariant mass distribu-
tion are quite similar. The three body effects are more
pronounced for the Dalitz plot distributions to which we
turn next.

In Fig. 6 we show the Dalitz plot distribution in terms
of Lorentz invariant, dimensionless parameters

x =

√
3

Q
(T1 − T2) =

√
3(t− u)

2M(M − 3mπ)
,

y =
3T3

Q
− 1 =

3(sc − s)
2M(M − 3mπ)

. (38)

Here Ti is the kinetic energy of the i-th pion in the three-
particle rest frame and, using the isospin-averaged pion

3 Note, that the double integral in Eq. (31) (F̂ (s) is given by a
contour integral over t as shown in Eq. (19)) can be inverted
using the Pasquier method [28, 55]. In this method the order of
the s and t integration is reversed with the latter deformed onto
a real axis that needs can be calculated analytically or numeri-
cally only once. This leads to a single-variable integral equation
for F̂ (s) with a kernel that depends on the input two-body scat-
tering amplitude. This is an equivalent method to solve the KT
equation which has its advantages and disadvantages [56].

mass, Q = M − 3m2
π and sc = 1

3 (M2 + 3m2
π) represents

the location of the center of the Mandelstam triangle.
Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For
ω decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in [37] and introduce polar variables

x =
√
z cosϑ , y =

√
z sinϑ , (39)

and fit the following polynomial expansion

|Fpar(z, ϑ)|2 = |N |2
(
1 + 2α z + 2β z3/2 sin(3ϑ) + 2 γ z2

+2 δ z5/2 sin(3ϑ) +O(z3)
)

(40)

to our matrix element. In (40) N is the overall nor-
malization constant. To find Dalitz plot parameters we
minimize

χ̄2 =

∫

D

dz dϑ

ND

(
P (z, ϑ)2(|Fpar(z, ϑ)|2 − |F (z, ϑ)|2)

P (0, 0)2|N |2
)2

ND =

∫

D

dz dϑ , (41)

where the integration range (D) is limited by the Dalitz
plot. The results are summarized in Table I. There is a
non negligible deviation between the Dalitz plot param-
eters with and without three body effects. In particular,
the three-body effects result in the decrease of intensity
by approximately 5% at the boundary of the Dalitz plot
and an increase by approximately 2% in the center. A
similar, but even more significant effect is observed for
φ → 3π, where the Dalitz plot intensity decreases at
the boundary by 42% and increases by 6% in the central
area. In Table I we also compare our results with other
theoretical calculations from [19] and [37]. We find our
Dalitz plot parameters to be quite similar to [37] (which
is not surprising since our formalisms are similar) and
in general smaller than the ones given in [19]. The lat-
ter calculation is based on a chiral Lagrangian modified
by explicit inclusion of light vector mesons [18]. In [18]
the unknown coupling constants of the Lagrangian were
obtained from the decay properties of the vector mesons
[57]. To this extent, the result of [19] provides a good
estimate for the decay width, while in the present anal-
ysis the decay width was used to fix the normalization.
The shortcoming of the approach in [19] is that it does
not fully comply with unitarity. Though the two-body
partial waves were unitarized, the crossed-channel effects
were not included.

On the experimental side, the situation is the follow-
ing: The measurements of φ → 3π were performed by
KLOE [58] and CMD-2 [59] collaborations. As for ω de-
cay we expect new data from CLAS12, WASA at COSY
and KLOE collaborations. Since the main purpose of the
present paper is to outline a novel theoretical scheme, we

Lorentz Invariant Variables

x =
√
z cos θ

y =
√
z sin θ
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V. NUMERICAL RESULTS

A. ω/φ→ 3π

We solve the integral equation in Eq.(31) by numerical
iteration 3. The convergence is fast, typically after three
to four iterations, no significant variations in the solution
are observed. From the amplitude, it is straightforward
to compute the Dalitz plot distribution, the partial decay
and the total, 3π decay widths, [1]

d2Γ

ds dt
=

1

(2π)3

1

32M3

1

3
P (s, t) |F (s, t, u)|2 , (37)

where P (s, t) = φ(s, t)/4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that fol-
low, the conformal expansion in Eq. (29) is truncated at

0th order i.e. only a constant term is kept and this is
the only free parameter of the model. It is fixed to repro-
duce the measured 3π decay width for ω and φ, which
are Γexpω→3π = 7.57 MeV and Γexpφ→3π = 0.65 MeV, respec-

tively [1]. Since the integral equation is linear in F (s),
the one parameter that is fitted is responsible for the
overall normalization, while the Dalitz plot distribution
is only affected by higher order terms in Σ(s).

In Fig. 5 we show the solution of the integral equa-
tion (31) together with the invariant mass distribution.
The significance of the three-body effects, given by the
cross-channel terms, is accessed by keeping or eliminat-
ing F̂ from the discontinuity relation. In either case Σ(s)
is represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of
the crossed-channels for ω → 3π is less significant than
for φ → 3π. In both cases, the invariant mass distribu-
tion are quite similar. The three body effects are more
pronounced for the Dalitz plot distributions to which we
turn next.

In Fig. 6 we show the Dalitz plot distribution in terms
of Lorentz invariant, dimensionless parameters

x =

√
3

Q
(T1 − T2) =

√
3(t− u)

2M(M − 3mπ)
,

y =
3T3

Q
− 1 =

3(sc − s)
2M(M − 3mπ)

. (38)

Here Ti is the kinetic energy of the i-th pion in the three-
particle rest frame and, using the isospin-averaged pion

3 Note, that the double integral in Eq. (31) (F̂ (s) is given by a
contour integral over t as shown in Eq. (19)) can be inverted
using the Pasquier method [28, 55]. In this method the order of
the s and t integration is reversed with the latter deformed onto
a real axis that needs can be calculated analytically or numeri-
cally only once. This leads to a single-variable integral equation
for F̂ (s) with a kernel that depends on the input two-body scat-
tering amplitude. This is an equivalent method to solve the KT
equation which has its advantages and disadvantages [56].

mass, Q = M − 3m2
π and sc = 1

3 (M2 + 3m2
π) represents

the location of the center of the Mandelstam triangle.
Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For
ω decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in [37] and introduce polar variables

x =
√
z cosϑ , y =

√
z sinϑ , (39)

and fit the following polynomial expansion

|Fpar(z, ϑ)|2 = |N |2
(
1 + 2α z + 2β z3/2 sin(3ϑ) + 2 γ z2

+2 δ z5/2 sin(3ϑ) +O(z3)
)

(40)

to our matrix element. In (40) N is the overall nor-
malization constant. To find Dalitz plot parameters we
minimize

χ̄2 =

∫

D

dz dϑ

ND

(
P (z, ϑ)2(|Fpar(z, ϑ)|2 − |F (z, ϑ)|2)

P (0, 0)2|N |2
)2

ND =

∫

D

dz dϑ , (41)

where the integration range (D) is limited by the Dalitz
plot. The results are summarized in Table I. There is a
non negligible deviation between the Dalitz plot param-
eters with and without three body effects. In particular,
the three-body effects result in the decrease of intensity
by approximately 5% at the boundary of the Dalitz plot
and an increase by approximately 2% in the center. A
similar, but even more significant effect is observed for
φ → 3π, where the Dalitz plot intensity decreases at
the boundary by 42% and increases by 6% in the central
area. In Table I we also compare our results with other
theoretical calculations from [19] and [37]. We find our
Dalitz plot parameters to be quite similar to [37] (which
is not surprising since our formalisms are similar) and
in general smaller than the ones given in [19]. The lat-
ter calculation is based on a chiral Lagrangian modified
by explicit inclusion of light vector mesons [18]. In [18]
the unknown coupling constants of the Lagrangian were
obtained from the decay properties of the vector mesons
[57]. To this extent, the result of [19] provides a good
estimate for the decay width, while in the present anal-
ysis the decay width was used to fix the normalization.
The shortcoming of the approach in [19] is that it does
not fully comply with unitarity. Though the two-body
partial waves were unitarized, the crossed-channel effects
were not included.

On the experimental side, the situation is the follow-
ing: The measurements of φ → 3π were performed by
KLOE [58] and CMD-2 [59] collaborations. As for ω de-
cay we expect new data from CLAS12, WASA at COSY
and KLOE collaborations. Since the main purpose of the
present paper is to outline a novel theoretical scheme, we

Dalitz Plot Amplitude Expansion
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V. NUMERICAL RESULTS

A. ω/φ→ 3π

We solve the integral equation in Eq.(31) by numerical
iteration 3. The convergence is fast, typically after three
to four iterations, no significant variations in the solution
are observed. From the amplitude, it is straightforward
to compute the Dalitz plot distribution, the partial decay
and the total, 3π decay widths, [1]

d2Γ

ds dt
=

1

(2π)3

1

32M3

1

3
P (s, t) |F (s, t, u)|2 , (37)

where P (s, t) = φ(s, t)/4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that fol-
low, the conformal expansion in Eq. (29) is truncated at

0th order i.e. only a constant term is kept and this is
the only free parameter of the model. It is fixed to repro-
duce the measured 3π decay width for ω and φ, which
are Γexpω→3π = 7.57 MeV and Γexpφ→3π = 0.65 MeV, respec-

tively [1]. Since the integral equation is linear in F (s),
the one parameter that is fitted is responsible for the
overall normalization, while the Dalitz plot distribution
is only affected by higher order terms in Σ(s).

In Fig. 5 we show the solution of the integral equa-
tion (31) together with the invariant mass distribution.
The significance of the three-body effects, given by the
cross-channel terms, is accessed by keeping or eliminat-
ing F̂ from the discontinuity relation. In either case Σ(s)
is represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of
the crossed-channels for ω → 3π is less significant than
for φ → 3π. In both cases, the invariant mass distribu-
tion are quite similar. The three body effects are more
pronounced for the Dalitz plot distributions to which we
turn next.

In Fig. 6 we show the Dalitz plot distribution in terms
of Lorentz invariant, dimensionless parameters

x =

√
3

Q
(T1 − T2) =

√
3(t− u)

2M(M − 3mπ)
,

y =
3T3

Q
− 1 =

3(sc − s)
2M(M − 3mπ)

. (38)

Here Ti is the kinetic energy of the i-th pion in the three-
particle rest frame and, using the isospin-averaged pion

3 Note, that the double integral in Eq. (31) (F̂ (s) is given by a
contour integral over t as shown in Eq. (19)) can be inverted
using the Pasquier method [28, 55]. In this method the order of
the s and t integration is reversed with the latter deformed onto
a real axis that needs can be calculated analytically or numeri-
cally only once. This leads to a single-variable integral equation
for F̂ (s) with a kernel that depends on the input two-body scat-
tering amplitude. This is an equivalent method to solve the KT
equation which has its advantages and disadvantages [56].

mass, Q = M − 3m2
π and sc = 1

3 (M2 + 3m2
π) represents

the location of the center of the Mandelstam triangle.
Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For
ω decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in [37] and introduce polar variables

x =
√
z cosϑ , y =

√
z sinϑ , (39)

and fit the following polynomial expansion

|Fpar(z, ϑ)|2 = |N |2
(
1 + 2α z + 2β z3/2 sin(3ϑ) + 2 γ z2

+2 δ z5/2 sin(3ϑ) +O(z3)
)

(40)

to our matrix element. In (40) N is the overall nor-
malization constant. To find Dalitz plot parameters we
minimize

χ̄2 =

∫

D

dz dϑ

ND

(
P (z, ϑ)2(|Fpar(z, ϑ)|2 − |F (z, ϑ)|2)

P (0, 0)2|N |2
)2

ND =

∫

D

dz dϑ , (41)

where the integration range (D) is limited by the Dalitz
plot. The results are summarized in Table I. There is a
non negligible deviation between the Dalitz plot param-
eters with and without three body effects. In particular,
the three-body effects result in the decrease of intensity
by approximately 5% at the boundary of the Dalitz plot
and an increase by approximately 2% in the center. A
similar, but even more significant effect is observed for
φ → 3π, where the Dalitz plot intensity decreases at
the boundary by 42% and increases by 6% in the central
area. In Table I we also compare our results with other
theoretical calculations from [19] and [37]. We find our
Dalitz plot parameters to be quite similar to [37] (which
is not surprising since our formalisms are similar) and
in general smaller than the ones given in [19]. The lat-
ter calculation is based on a chiral Lagrangian modified
by explicit inclusion of light vector mesons [18]. In [18]
the unknown coupling constants of the Lagrangian were
obtained from the decay properties of the vector mesons
[57]. To this extent, the result of [19] provides a good
estimate for the decay width, while in the present anal-
ysis the decay width was used to fix the normalization.
The shortcoming of the approach in [19] is that it does
not fully comply with unitarity. Though the two-body
partial waves were unitarized, the crossed-channel effects
were not included.

On the experimental side, the situation is the follow-
ing: The measurements of φ → 3π were performed by
KLOE [58] and CMD-2 [59] collaborations. As for ω de-
cay we expect new data from CLAS12, WASA at COSY
and KLOE collaborations. Since the main purpose of the
present paper is to outline a novel theoretical scheme, we
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FIG. 6: The Dalitz plots for ω → 3π (left-hand panel) and φ → 3π (right-hand panel) decays. The distributions are divided
by the p-wave phase space P and normalized to 1 at x = y = 0. This is a parameter free result, because we kept only one term
in the conformal expansion (29) which is responsible for the overall normalization. See main text for details.

TABLE I: Dalitz Plot parameters and
√
χ̄2 of the polynomial parametrization (40) for ω → 3π. In addition to our results

we also show the selected results from Niecknig et al. [37] (dispersive study with incorporated crossed-channel effects) and
Terschlusen et al. [19] (Lagrangian based study with the pion-pion rescattering effects).

α× 103 β × 103 γ × 103 δ × 103
√
χ̄2 × 103

This paper (F̂ = 0) 136 - - - 3.5

This paper (full) 94 - - - 3.2

Niecknig et al. [37] 84...96 - - - 0.9...1.1

Terschlusen et al. [19] 202 - - - 6.6

This paper (F̂ = 0) 125 30 - - 0.74

This paper (full) 84 28 - - 0.35

Niecknig et al. [37] 74...84 24...28 - - 0.052...0.078

Terschlusen et al. [19] 190 54 - - 2.1

This paper (F̂ = 0) 113 27 24 - 0.1

This paper (full) 80 27 8 - 0.24

Niecknig et al. [37] 73...81 24...28 3...6 - 0.038...0.047

Terschlusen et al. [19] 172 43 50 - 0.4

This paper (F̂ = 0) 114 24 20 6 0.005

This paper (full) 83 22 1 14 0.079

Niecknig et al. [37] 74...83 21...24 0...2 7...8 0.012...0.011

Terschlusen et al. [19] 174 35 43 20 0.1

postpone the comprehensive data analysis to the future
and for now only consider the application to electromag-
netic (EM) transition form factors of ω/φ. In partic-
ularly, the transition ω → πγ∗ is of interest since the
existing data in the time-like region seems to be incom-
patible with the vector meson dominance model (VMD)
[60, 61].

B. ω/φ→ πγ∗

In this section we discuss the EM transition form fac-
tors of the ω and φ mesons. The Dalitz decay of the
vector mesons into pion and a lepton pair

〈π0(p0) l+(p+) l−(p−) |T |V (pV , λ)〉 =

(2π)4 δ(pV − p0 − p+ − p−)HV π , (42)
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Analysis: Kinematics
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Analysis: Kinematics
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Analysis: Decay Amplitude Parameter (IgorParameter)
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Analysis: Decay Amplitude Parameter (IgorParameter)

)2t (GeV
200 400 600 800 1000 1200

Ig
o

rP
ar

am
et

er

-12

-10

-8

-6

-4

-2

0

Fit Parameter: IgorParameter

IgorParameter
IgorParameter

Eγ:[2000-2100]MeV and t:[0.400-1.300]GeV2

Chris Zeoli (FSU) Dalitz Analysis of ω → 3π June 4, 2015 34 / 48



Analysis: Decay Amplitude Parameter (IgorParameter)
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Analysis: Decay Amplitude Acceptance (IgorParameter)
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Analysis: Decay Amplitude Acceptance (IgorParameter)
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Analysis: Decay Amplitude Acceptance (IgorParameter)
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Next Steps

discussed
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Analysis: Dalitz Plot Parameter (α)
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Analysis: Dalitz Plot Parameters (α,β)
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Analysis: Dalitz Plot Parameters (α,β,γ)
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Analysis: Dalitz Plot Parameters (α,β,γ,δ)
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Analysis: Integrated Populations and Acceptance
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The Decay Amplitude

6

FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω′(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
∞∑

i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
√
si − s

(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

(
1

π

∫ si

sπ

ds′
ρ(s′) t∗(s′)

Ω∗(s′)
F̂ (s′)
s′ − s + Σ(s)

)
.

(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.

In Eq. (31) there is no need for subtractions in the dis-
persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.

Besides F (s), the problem with the determination of
inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp

(
s

π

∫ si

sπ

ds′

s′
δ(s′)
s′ − s

)
, (32)

KT Amplitude
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FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω′(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
∞∑

i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
√
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(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

(
1
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∫ si
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ds′
ρ(s′) t∗(s′)

Ω∗(s′)
F̂ (s′)
s′ − s + Σ(s)

)
.

(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.

In Eq. (31) there is no need for subtractions in the dis-
persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.

Besides F (s), the problem with the determination of
inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp
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FIG. 4: Real and imaginary parts of Ωel(s) in Eq. (32) (Dot-Dashed), Ω′(s) in Eq. (35) (Dashed) and Ω(s) in Eq. (34) (Solid).

The first part is determined entirely by elastic scattering
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above
s = si. It is largely unknown, and often parametrized
through an expansion in a conformal variable which maps
the right-hand cut in the complex s-plane onto the unit
disk. Such a mapping is known as a convenient repre-
sentation of functions on a cut plane with the the known
analytical properties [48],

Σ(s) =
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i=0

ai ω
i(s) (29)

The variable

ω(s) =

√
si − sE −

√
si − s√

si − sE +
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si − s

(30)

maps the cut plane onto the unit disk. The parameter
si = 1 GeV is identified with the point where inelas-
tic contributions are expected to become relevant2 and
the expansion point sE should lie below the cut. We
define sE = 0. The conformal mapping technique was
successfully applied in other descriptions of two-to-two
amplitudes e.g. in [49–51] it was used to take into ac-
count the contributions from the more distant left-hand
cuts. However, to the best of our knowledge the confor-
mal mapping technique has never been used before in the
context of the KT equations.

2 Note the following inelastic thresholds: mπ + mω = 0.92 GeV
(only for the ω decay), 2mK = 0.99 GeV and 8mπ = 1.1 GeV
(we omit the 4π and 6π multi-particle thresholds since they are
known to be weak).

With the inelastic contributions parametrized by the
function, Σ(s), the integral equation for the KT ampli-
tude takes the form of

F (s) = Ω(s)

(
1

π

∫ si

sπ

ds′
ρ(s′) t∗(s′)

Ω∗(s′)
F̂ (s′)
s′ − s + Σ(s)

)
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(31)
This is an alternative to the standard way which employs
subtractions to reduce sensitivity of the dispersive inte-
gral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals,
including computation of Ω(s) run over inelastic regions,
while the dispersion relation contains only the elastic con-
tributions. Furthermore, subtracting an analytical func-
tion of s does not account for the change in the analyti-
cal behavior of the amplitudes due to opening of inelastic
channels.

In Eq. (31) there is no need for subtractions in the dis-
persive integral since it is restricted to the elastic-region,
which the only part of the right hand cut controlled by
elastic unitarity. The unknown, inelastic contributions
are parametrized by Σ(s), and are to be determined by
comparing with the experimental data, or other theoret-
ical approaches that treat inelastic channels explicitly.
Moreover, with the dispersive integral restricted to a fi-
nite interval over s there are uncontrollably large con-
tributions from higher-partial waves, which otherwise re-
quire more and more subtractions.

Besides F (s), the problem with the determination of
inelastic contributions also affects computation of Ω(s).
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s = si. Therefore, we seek
its solution given in terms of the Omnès function [52, 53]
taken only over the elastic region

Ωel(s) ≡ exp

(
s

π

∫ si

sπ

ds′

s′
δ(s′)
s′ − s

)
, (32)

dispersion relation

a0 = “IgorParameter”
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Previous Parameter Values and Errors,
Eγ:[2500-3500]MeV
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Previous Comments by Mike P., Adam S., Igor D. and
Carlos S.

Fitted values are unstable. Have 8M data and 1.5M MC accepted,
Need at lest the same amount of of acc-MC and data.

Could you bin in t? Your rho parameters are t dependent and that
trend will reflect in your fits and in the Igor’s parameter that you will
finally want to extract.

Adam suggested that you may have too many parameters in the fit,
as rho00 is also part of the overall normalization.
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Comments by Mike P., Adam S., Igor D. and Carlos S.

4) It will be good to start with a fit using F = 1 (w/o Igor correction),
and extract the rho parameters in that way to compare with g11
results, and then include the new Igor parameter.

5) Igor’s parameter should be independent of production, i.e. on
Ebeam and t.
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