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Abstract. The measurement of Deeply Virtual Compton Scattering on the proton with a polarized positron beam in CLAS12 can
give access to a complete set of observables for the extraction of Generalized Parton Distributions with the upgraded 11-GeV
CEBAF. This provides a clean separation of the real and imaginary parts of the amplitudes, greatly simplifies the analysis, and
provides a crucial handle on the model dependences and associated systematic uncertainties. The real part of the amplitude is in
particular sensitive to the D-term which parameterizes the Gravitational Form Factors of the nucleon. Azimuthal Dependences and

t-dependences of the Azimuthal Moments for Beam Charge Asymmetries on unpolarized Hydrogen are estimated using a 1000

hours run with a luminosity of 2 x 10** cm™s~' and 80% beam polarization.

INTRODUCTION

The challenge of understanding nucleon electromagnetic structure still continues after six decades of experimental
scrutiny. From the initial measurements of elastic form factors to the accurate determination of parton distributions
through deep inelastic scattering, the experiments have increased in statistical and systematic accuracy. During the past
two decades it was realized that the parton distribution functions represent special cases of a more general, much more
powerful, way to characterize the structure of the nucleon, the generalized parton distributions (GPDs) (see [1, 28] for
reviews).

The GPDs are the Wigner quantum phase space distribution of quarks in the nucleon describing the simultaneous
distribution of particles with respect to both position and momentum in a quantum-mechanical system. In addition to
the information about the spatial density and momentum density, these functions reveal the correlation of the spatial
and momentum distributions, i.e. how the spatial shape of the nucleon changes when probing quarks of different
momentum fraction of he nucleon.

The concept of GPDs has led to completely new methods of “spatial imaging” of the nucleon in the form of
(2+1)-dimensional tomographic images, with 2 spatial dimensions and 1 dimension in momentum [3, 4, 5]. The
second moments of GPDs are related to form factors that allow us to quantify how the orbital motion of quarks in
the nucleon contributes to the nucleon spin, and how the quark masses and the forces on quarks are distributed in
transverse space, a question of crucial importance for our understanding of the dynamics underlying nucleon structure
and the forces leading to color confinement.

The four leading twist GPDs H, H, E, and E, depend on the 3 variable x, &, and ¢, where x is the longitudinal
momentum fraction of the struck quark, £ is the longitudinal momentum transfer to the quark (¢ = xg/(2 — xp)), and ¢
is the invariant 4-momentum transfer to the proton. The mapping of the nucleon GPDs, and a detailed understanding
of the spatial quark and gluon structure of the nucleon, have been widely recognized as key objectives of nuclear
physics of the next decades. This requires a comprehensive program, combining results of measurements of a variety
of processes in electron—nucleon scattering with structural information obtained from theoretical studies, as well as
with expected results from future lattice QCD simulations. The CLAS12 detector, shown in Fig. 2, has recently been
completed and has begun the experimental science program in the 12 GeV era Jefferson Lab.



ACCESSING GPD IN DVCS

The most direct way of accessing GPDs at lower energies is through the measurement of Deeply Virtual Compton
Scattering (DVCS) in a kinematical domain where the so-called handbag diagram shown in Fig. 1 makes the dominant
contributions. However, in DVCS as in other deeply virtual reactions, the GPDs do not appear directly in the cross
section, but in convolution integrals called Compton Form Factors (CFF), which are complex quantities defined as,
e.g. fro GPD H:
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where the first term on the r.h.s. corresponds to the real part and the second term to the imaginary part of the scat-
tering amplitude. The superscript ¢ indicates that GPDs depend on the quark flavor. From the above expression it is
obvious that GPDs, in general, can not be accessed directly in measurements. However, in some kinematical regions
the Bethe-Heitler (BH) process where high energy photons are emitted from the incoming and scattered electrons, can
be important. Since the BH amplitude is purely real, the interference with the DVCS amplitude isolates the imaginary
part of the DVCS amplitude. The interference of the two processes offers the unique possibility to determine GPDs
directly at the singular kinematics x = £. At other kinematical regions a deconvolution of the cross section is required
to determine the kinematic dependencies of the GPDs. It is therefore important to obtain all possible independent
information that will aid in extracting information on GPDs. The interference terms for polarized beam I, ;;, longitu-
dinally polarized target Iy, transversely (in scattering plane) polarized target /7, and perpendicularly (to scattering
plane) polarized target Iy p are given by the expressions:
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where T = —t/4M?, ' = (15 — 1)/4M>. By measuring all 4 combinations of interference terms one can separate all 4

leading twist GPDs at the specific kinematics x = £. Experiments at JLab using 4 to 6 GeV electron beams have been
carried out with polarized beams [34, 7, 33, 9, 10] and with longitudinal target [11, 12, 13], showing the feasibility
of such measurements at relatively low beam energies, and their sensitivity to the GPDs. Techniques of how to extract
GPDs from existing DVCS data and what has been learned about GPDs can be found in [37, 15]. In the following
sections we discuss what information may be gained by employing both electron and positron beams in deeply virtual
photon production.

FIGURE 1. Leading order contributions to the production of high energy single photons from protons. The DVCS handbag diagram
contains the information on the unknown GPDs.



FIGURE 2. The CLASI12 detector in Hall B. The beam line is running from the right to the left. The liquid hydrogen target
is centered in the solenoid magnet with 5 Tesla central magnetic field, and is surrounded by tracking and particle identification
detectors covering and polar angle range from 40° to 125°. The forward detector consists of the 27 gas Cherenkov Counter (large
silvery box to the right), the tracking chambers around the superconducting Torus magnet, 2 layers of time-of-flight systems and
two layers of electromagnetic calorimeters for electron triggering and photon detection to the far left.

Differential cross section for polarized electrons and positrons

The structure of the differential cross section for polarized beam and unpolarized target is given by:
Oepoeyp = OBH *+ €cTINT + Pre¢Gint + 0ves + PeGves (6)

where o is even in azimuthal angle ¢, and & is odd in ¢. The interference terms oy ~ ReA,n_,~ and
Ot ~ ImA,N_,,N are the real and imaginary parts, respectively of the Compton amplitude. Using polarized electrons
the combination —&yr+3Jvcs can be determined by taking the difference of the beam helicities. The electron-positron
charge difference for unpolarized beams determines o7 . For fixed beam polarization and taking the electron-positron
difference one can extract the combination P, ;yr + on7. If only a polarized electron beam is available one can sep-
arate 0y from Gycs using the Rosenbluth technique [16]. This requires measurements at two significantly different
beam energies which reduces the kinematical coverage that can be achieved with this method. With polarized elec-
trons and polarized positrons both o;yr can be determined and 6y can be separated from 6y ¢y in the full kinematic
range available at the maximum beam energy.

Differential cross section for polarized proton target

The structure of the differential cross section for polarized beam and polarized target contains the polarized beam term
of the previous section and an additional term related to the target polarization [19, 20]:

Cgpseyp = Tep—eyp + T[PeAopy + AT INT + PreeAaint + AGyes + PeAoycs] @)

where the target polarization 7 can be longitudinal or transverse. If only unpolarized electrons are available, the
combination —Adnyr+Adycs can be measured from the differences in the target polarizations. If unpolarized electrons
and unpolarized positrons are available the combination T A6yt + 0y can be determined at fixed target polarization.
With both polarized electron and polarized positron beams, the combination TAG ;x7 + TPeAcint + PeGint + TNt
can be measured at fixed target polarization. Availability of both polarized electron and polarized positron beams thus
allows the separation of all contributing terms. If only polarized electron beams are available a Rosenbluth separation
with different beam energies can separate the term Ad ;7 from Adycs, again in a much more limited kinematical
range and with likely larger systematic uncertainties. The important interference term Ao yr can only be determined
using the combination of polarized electron and polarized positron beams.



ESTIMATES OF EXPERIMENTAL UNCERTAINTIES

The CLAS12 Detector

The experimental program will use the CLAS12 detector, shown in Fig. 2, for the detection of the hadronic final
states. CLAS12 consists of a Forward Detector (FD) and a Central Detector (CD). The Forward Detector is comprised
of six symmetrically arranged sectors defined by the six coils of the superconducting torus magnet. Charged particle
tracking is provided by a set of 18 drift chambers with a total of 36 layers in each sector. Additional tracking at
5° — 35° is achieved by a set of 6 layers of micromesh gas detectors (micromegas) immediately downstream of the
target area and in front of the High Threshold Cherenkov Counter (HTCC). Particle identification is provided by
time-of-flight information from two layers of scintillation counter detectors (FTOF). Electron, photon, and neutron
detection are provided by the triple layer electromagnetic calorimeter, PCAL, EC(inner), and EC(outer). The heavy-
gas Cherenkov Counter (LTCC) provides separation of high momentum pions from kaons and protons. The Central
Detector consists of 6 to 8 layers (depending on the configuration) of silicon strip detectors with stereo readout and 6
layers of micromegas arranged as a barrel around the target, a barrel of scintillation counters to measure the particle
flight time from the target (CTOF), and a scintillation-counter based Central Neutron Detector (CND).

Beam spin asymmetries on protons

Beam spin asymmetries of polarized electrons for the DVCS process have been measured at lower energies and are
known to be large, up to
+ -
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where o* and o~ are the cross sections for the electron beam spin parallel and spin anti-parallel to the electron beam
direction. Figure 3 shows projections of the beam asymmetry for some specific kinematics at an electron beam energy
of 11 GeV. The uncertainties are are estimated assuming an experiment of 1000 hrs at an instantaneous luminosity of
L = 10¥cm?s™!. The asymmetry is the results of the interference term &y in equation (6). Note that the magnitude
of the interference is independent of the electric charge, but the sign of the asymmetry is opposite for electrons and
positrons.

Equation (6) also shows that the term oy7 can be isolated in the difference of unpolarized electrons and
positrons. Examples of the charge difference and the charge asymmetry are shown in Figure 4. The unpolarized
charge asymmetry AYY and its cos ¢ moment A®¢ can both be large for the dual model assumed in our estimate.
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FIGURE 3. The beam spin asymmetry showing the DVCS-BH interference for 11 GeV beam energy [17]. Left panel: x = 0.2,
0? = 3.3GeV?, —t = 0.45Ge V2. Middle and right panels: ¢ = 90°, other parameters same as in left panel. Many other bins will be
measured simultaneously. The curves represent various parameterizations within the VGG model [18]. Projected uncertainties are
statistical.
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FIGURE 4. Electron-positron DVCS charge asymmetries: Top-left: Azimuthal dependence of the charge asymmetry for positron
and electron beam at 11 GeV beam. Top-right: Moment in cos(¢) of the charge asymmetry versus momentum transfer ¢ to the
proton. Bottom-left: Charge asymmetries for polarized electron and positron beams at fixed polarization (LU). Bottom right: Charge
asymmetry for longitudinally polarized protons at fixed polarization (UL). The error bars are estimated for a 1000 hrs run with
positron beam and luminosity L = 2x 103 cm~2sec™! at a beam polarization P = 0.6. Electron luminosity L = 10x 10** cm™2sec™!,
and electron beam polarization P = 0.8. The error bars are statistical for a single bin in Q?, x, and ¢ as shown in the top-left panel.

Other bins are measured simultaneously.

Estimates of charge asymmetries for different lepton charges

For quantitative estimates of the charge differences in the cross sections we use the acceptance and luminosity achiev-
able with CLAS12 as basis for measuring the process ep — eyp at different beam and target conditions. A 5 cm
long liquid hydrogen is assumed with an electron current of 75nA, corresponding to an operating luminosity of
10%cm2sec™!. For the positron beam a 5 times lower beam current of 15nA is assumed. In either case 1000 hours
of beam time is used for the rate projections. For quantitative estimates of the cross sections the dual model [21, 22]
is used. It incorporates parameterizations of the GPDs H and E. As shown in Fig. 4, effects coming from the charge
asymmetry can be large. In case of unpolarized beam and unpolarized target the cross section for electron scatter-
ing has only a small dependence on azimuthal angle ¢, while the corresponding positron cross section has a large ¢
modulation. The difference is directly related to the term o7 in equation (6).

The Science Case for DVCS with polarized Positrons

In previous sections we have shown that polarized positron beams are necessary to disentangle all contributions to the
The science program for DVCS with electrons beams has been well established, and several approved experiments
for 12 GeV operation have already been carried out or are currently in the process and planned for the next few
years. What do polarized positron beams add that makes a most compelling case for the developing of a polarized
positron beam for experiments with CLAS12? In this section we discuss on one example what the impact of DVCS
measurements with polarized positron beams can bring to the unraveling the force distribution on quarks in the proton.
Here we refer to the recent publication in the journal Nature of the results of an analysis on the pressure distribution
in the proton [23].

The Nature paper is based on the results of Beam Spin Asymmetry and Unpolarized Cross-Section DVCS mea-



surements performed with CLAS in Hall B. The determination of the pressure distribution proceeds in several steps:

e  We begin with the sum rules that relate the second Mellin moments of the GPDs to the Gravitational Form
Factors (GFFs) [26].

e  We then define the complex CFF H, which is directly related to the experimental observables describing the
DVCS process, i.e., the differential cross section and the beam spin asymmetry.

e  The real and imaginary parts of H can be related through a dispersion relation [39, 40, 41] at fixed ¢, where the
D(1)-term appears as a subtraction constant [42].

e  We recover d(f) from the expansion of the D(f)-term in the Gegenbauer polynomials of &, the momentum
transfer to the struck quark.
We finally proceed with the fits to the data and extract D(¢) and determine d (¢).
The pressure distribution is then determined from the relation of d;(¢) and p(r) through a Bessel integral.

The sum rules that relate the second Mellin moments of the chiral-even GPDs to the GFFs are [26]:

fdxx [H(x,&0) + E(x,&,1)] 2J(1)
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where M,(¢) and J(f) respectively correspond to the time-time and time-space components of the Energy Momentum
Tensor (EMT), and give access to the mass and total angular momentum distributions carried by the quarks in the
proton, and where the quantity d,(¢) corresponds to the space-space components of the EMT, and encodes the shear
forces and pressure acting on the quarks. We have some constraints on M,(#) and J(¢), notably at t = O they are fixed
to the proton’s mass and spin. By contrast, almost nothing is known on the equally fundamental quantity d;(¢). As the
GFF d,(t) encodes the shear forces on the quarks and pressure distribution in the proton, we can expect the existence
of a zero sum rule ensuring the total pressure and forces to vanish, thus preserving the stability of the dynamics. The
observables are parameterized by the CFFs, which for the GPD H are the real quantities Re/H and Im7H defined by :
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The average quark momentum fraction x is not observable in the process; it is integrated over with the quark
propagators. Analytical properties of the amplitude in the Leading Order (LO) approximation lead to the dispersion
relation :
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where the subtraction constant is the so-called D-term. The dispersion relation allows us trading-oft the two CFFs as
unknowns with one CFF and the D-term [43, 44].

For our purpose we recover the d;(¢) as the first coefficient in the Gegenbauer expansion of the D-term. Here, we
will truncate this expansion to d;(¢) only.
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Our starting points in the analysis are the global fits presented in [35, 36], referred to as KM parameterization.
The imaginary part of the amplitude is calculated from a parameterization of the GPDs along the diagonal x = £.
The real part of the amplitude is then reconstructed assuming LO dominance and applying the dispersion relation.
The &-dependence of the D-term is completely generated by the Gegenbauer expansion, restricted to the d;(f) term
only. Finally, the momentum transfer dependence of the d; () term is given as a functional form, with three parameters
d1(0), M, and « :

mm=m@@—éﬂw, (13)



where the chosen form of d;(#) with @ = 3 is consistent with the asymptotic behavior required by the dimensional
counting rules in QCD [45]. We adjust and fix the central values of the model parameters to the data at 6 GeV [34, 33].
They include unpolarized and polarized beam cross-sections over a wide phase-space in the valence region, and
support the model indicating that the GPD H largely dominates these observables. An illustration of a fit to the d,(#)
dependence is provided in figure 14. The data points correspond to the values extracted from the fit to the unpolarized
cross section data in figure 3. The experimental analysis shows that d;(0) has a negative sign. This is consistent with
several theoretical studies [48, 47, 41]. The fit results in a d;(0) value of:

di(0) = —=2.04 + 0.14(stat.) = 0.33(syst.).

The negative sign of d;(0) found in this analysis seems deeply rooted in the spontaneous breakdown of chiral sym-
metry [46], which is a consequence of the transition of the microsecond old universe from its state of de-confined
quarks and gluons to the state of confined quarks in stable protons. It is thus intimately connected to the stability of
the proton [48] and of the visible universe.

We finally can relate the GFF d,(¢) to the pressure distribution via the spherical Bessel integral :
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FIGURE 5. Example of a fit to d,(#). The error bars are from the fit to the cross sections at fixed value of —¢. The single-shaded
area at the bottom corresponds to the uncertainties from the extension of the fit into regions without data and is reflected in the
green shaded are in Fig. 6. The double-shaded area corresponds with the projected uncertainties from future experiment [49] as
shown in Fig. 6 with the red shaded area. Uncertainties represent 1 standard gaussian deviation.

Our results on the quark pressure distribution in the proton are illustrated in figure 6. The black central line
corresponds to pressure distribution r?p(r) extracted from the D-term parameters fitted to the published data at 6
GeV [34].The corresponding estimated uncertainties are displayed as the shaded area shown in light green. There is a
positive core and a negative tail of the 72 p(r) distribution as a function of the radial distance from the proton’s center
with a zero-crossing near 0.6 fm from that center. We also note that the regions where repulsive and binding pressures
dominate are separated in radial space, with the repulsive distribution peaking near r = 0.25 fm, and the maximum of
the negative pressure responsible for the binding occurring near » = 0.8 fm. The outer shaded area shown in dark green
in figure 1 corresponds with the D-term uncertainties obtained in the global fit results from previous research [35, 36].
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FIGURE 6. The radial pressure distribution in the proton. The graph shows the pressure distribution 72 p(r) resulting from the
interactions of the quarks in the proton versus the radial distance from the center in femtometer. The black central line corresponds
to the pressure extracted from the D-term parameters fitted to the published data at 6 GeV [34]. The corresponding estimated
uncertainties are displayed as the shaded area shown in light green. Uncertainties represent 1 standard deviation.

They exhibit a shape similar to the light green area and confirm the robustness of the analysis procedure to extract the
D-term. Here we remark that the pressure p(r) must satisfy the stability condition

fm Pp(rydr = 0, s)

0

which is realized within the uncertainties of our analysis. The shape of the radial pressure distribution mimics closely
the results obtained within the chiral quark soliton model [48]. In this model, the proton is modeled as a chiral soliton
in which constituent quarks are bound by a self-consistent pion field. The comparison with our results suggests that
the pion field is significantly relevant for the description of the proton as a bound state of quarks.

What positrons will add to this program

There a couple of limiting factors in the analyses presented above. These are related to the limited experimental
information that can be obtained from having just polarized electron baem available. The details of the limiting factors
were discussed section a) and in subsection a), and in subsection a).

e  The use of the dispersion relation in equ. (9) to determine the ReH (¢, 1)
e  The need to extrapolate the 7—dependence of the formula in equ. (14).

While the extrapolation is unavoidable when extracting the pressure distribution over the entire radial distance,
applying the dispersion relation in equ.(9) at large —¢ values is problematic where issues with convergence may occur.
It is therefore highly desirable to determine the subtraction term D(¢) directly from the DVCS data without the need
for applying the dispersion relation. Such a procedure requires to determine both, the imaginary part of CFF H (¢, f)
in equ. (9) directly from experiment. The term D(¢) can then be directly extracted. By isolating the terms o;y7 and the
term & y7 in equ. (6), we can separate the real and imaginary parts of the Compton amplitude. The separation can by
achieved by measuring the difference in the unpolarized cross sections and the helicity-dependent cross sections for
(polarized) electrons and (polarized) positrons. From figure 4 we can infer that both of these observables can result in
large cross section differences and polarization asymmetries, and can be well measured already with modest positron
currents, by making use of the large acceptance capabilities of CLAS12.

While our focus for this LOI is the determination of the pressure distribution and the shear forces in the proton
(and neutron), using a spin polarized target and and polarized electron and positrons we can separate the term Ao yr
in equ. (7) which is related to the GPD E in equ. (4) and corresponding Compton form factor E(&, f). These quantities



are related to the angular momentum distribution in the proton. Measurement of E(&, t) will allow for the extraction of
the radial dependence of the angular momentum density in protons and can be determined in a fashion similar to the
one described for the pressure distribution.

Experimental Setup for DVCS Experiments

Figure 7 shows generically how the electron-proton and the positron-proton DVCS experiments would be configured.
Electrons and positrons will be detected in the forward detection system of CLAS12. However, for the positron run
the Torus magnet would have the reversed polarity so that positron trajectories would look identical to the electron
trajectories in the electron-proton experiment, and limit systematic effects in acceptances. The recoil proton in both
cases would be detected in the Central Detector at the same solenoid magnet polarity, also eliminating most systematic
effects in the acceptances. However, there is a remaining systematic difference in the two configuration, as the forward
scattered electron/positron would experience different transverse field components in the solenoid, which will cause
the opposite azimuthal motion in ¢ in the forward detector. A good understanding of the acceptances in both cases is
therefore important. The high-energy photon is, of course, not affected by the magnetic field configuration.

Forward Detector

Central
Detector

Solenoid

] Hicc

Forward Detector:

- Charged particle tracking in Torus field
- Polar angle range 6 = 6 - 35°

- Azimuthal angle range (0.6 — 0.9)x21t
-e*fe IDin HTCC & ECAL

Central Detector:

- Charged particle tracking in solenoid field
- Polar angle range 6 = 35 - 125°

- Azimuthal angle range Ad= 360°

- Particle ID by TOF for p < 1.5 GeV/c

FIGURE 7. Generic CLAS12 configuration for the electron-proton and the positron-proton experiments. The central detector will
detect the protons, and the bending in the magnetic solenoid field will be identical for the same kinematics. The electron and the
positron, as well as the high-energy DVCS photon will be detected in the forward detector part. The electron and positron will
be deflected in the Torus magnetic field in the same way as the Torus field direction will be opposite in the two experiments. The
deflection in ¢ due to the solenoid fringe field will be of same magnitude A¢ but opposite in direction. The systematic of this shift
can be controlled by doing the same experiment with opposite solenoid field directions that would result in the sign change of the

Ag.

Conclusions

In this LOI we described the use of a new polarized positron beam in conjunction with the already available polarized
electron beam to significantly enhance the program to study the generalized parton distribution and to extract physical
quantities that are related to the mechanical properties of the proton, such as the distribution of shear forces, the
pressure distribution, mechanical radius of the proton, and angular momentum distribution. These quantities have
never before been measured as they couple directly only to the gravitational field. The development of the generalized
parton distributions and their relation ship to the gravitational form factors through the second Mellin moments made
this feasible in an indirect way. First results have been obtained recently [23]. An experiment has been approved by
PAC44 using a polarized electron beam to improved the precision of the pressure distribution. The use of the CLAS12
detector to broaden this program is natural as the expected polarized positron current is much lower than what can be
achieved with polarized electron beams, and fits naturally with the capabilities of the CLAS12. Simulations have been



made with realistic beam currents and beam polarization that show that the relevant observables can be measured with
good accuracy and will have a very significant impact and the scientific results.
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