Structure Functions with

Charged and Neutral Current

a) Neutral current.

- I. The xF3 nucleon structure function (the γZ interference contribution)
- II. F_L Large background at high y => need some e+ data for background subtraction

III.Parity violation in weak neutral current

- b) Charged current.
 - i. up-type or down-type flavors.
 - ii. The charm and anticharm production in charged current DIS to extract strange and anti-strange distributions.
 - iii. The production of Ds+ mesons in diffractive charged current DIS information on the gluon structure of the diffraction mechanism in QCD.
 - iv. Right-handed W-boson exchange.
- c) NC+CC : The flavor separation of the pion and kaon structure

NC and CC DIS

$$rac{d^2 \sigma^{NC}}{dx dQ^2} \sim |rac{A}{Q^2} + rac{B}{Q^2 + M_Z^2}|^2 imes \mathrm{pdf's}|^2$$

 $rac{d^2\sigma^{CC}}{dxdQ^2}\sim G_F^2(rac{M_W^2}{M_W^2+Q^2})^2 imes \mathrm{pdf's}$

2

Neutral Current DIS: xF3

.Structure functions (polarized)

 $= 2 v_f a_f \Sigma_i x [q_f - \overline{q_f}]$

quarks (mainly u and d quarks)

the structure function xF3.

Large backgrounds at high $y=1-E'/E_e$

Subtraction with opposite beam charge data, corrected for background charge asymmetry

- ightarrow Need very high luminosity at minimal three energy settings
- \rightarrow Need some e⁺ data
- → Need $E_e \rightarrow E'$ as large as possible (y=0.9 is E'=1 GeV for 10 GeV electron beam energy)
- → Need tracker in front of backward calorimeter, charge measurement [H1 BST..]
- ightarrow Need efficient photoproduction tagger

Neutral Current DIS at HERA

 Polarization asymmetry
 Parity violation in weak neutral current at EW scale: observed for the first time in DIS

Neutral Weak Coupling C3q Using Polarized Positron and Electron Beams

For proton

$$A_p^{e_L^- - e_R^+} = \left(\frac{3G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \frac{y(2-y)}{2} \frac{2C_{2u}u_V - C_{2d}d_V + 2C_{3u}u_V - C_{3d}d_V}{4u+d}$$

For deuteron

eron

$$A_{d}^{e_{L}^{-}-e_{R}^{+}} = \left(\frac{3G_{F}Q^{2}}{2\sqrt{2}\pi\alpha}\right) \frac{y(2-y)}{2} \frac{(2C_{2u}-C_{2d}+2C_{3u}-C_{3d})R_{V}}{5}, \quad (9)$$

small

where $R_V \equiv (u_V + d_V)/(u + d)$. Note that contributions from *s* and *c* quarks have been neglected in this derivation.

~ _ _+

.

http://dx.doi.org/10.1063/1.3232025

X. Zheng

CC

	Charged Current DIS:		
$\frac{d^2\sigma(e^*p)}{d^2\sigma(e^*p)} =$	$\frac{G_F^2}{2}$	$\left(\frac{M_{W}^{2}}{(u+c)^{2}+(1-y)^{2}(d+s)}\right)^{2}$	
$\frac{dxdQ^2}{d^2\sigma(e^-p)}$	2π G_F^2	$\frac{M_{W}^{2} + Q^{2}}{(\frac{M_{W}^{2}}{2})^{2} \{(u+c) + (1-v)^{2}(\overline{d}+\overline{s})\}}$	
$dxdQ^2$	2π	$M_W^2 + Q^2$ ((a + c) + (a - y)) (a + s))	

Charged current process: up-type or down-type flavors.

Charm production in Charged Current DIS

Elke A.

HERA

√S [GeV]

 $\sigma(e+p \rightarrow v_e + X) \sim 50 \text{pb} (\text{HERA } Q^2 \rightarrow 200 \text{GeV}^2)$ $\sigma(e+p \rightarrow v_e + c + X) \sim 5 \text{pb} (\text{HERA } Q^2 \rightarrow 200 \text{GeV}^2)$

At EIC : σ(CC DIS) ~ 10 pb (Q²>10GeV²) σ(CC DIS + charm) ~ 1 pb (?) => ~ 1 event/ minute (with L~10³⁴)

The charm and anticharm production in charged current DIS to extract strange and anti-strange distributions.

Measurements of strange
distribution (+polarization)
W⁺ s -> c
| Vsc| =0.97

0x250 GeV

10²

20x250 GeV

.Flavor mixing

σ^{CC} [pb]

Q²_{min} [GeV²

 $NLO, 0.01 \le y \le 0.95$

.BGF

• W⁺g → c s

The production of Ds+ mesons in diffractive charged current DIS

The production of Ds+ mesons in diffractive charged current DIS - information on the gluon structure of the diffraction mechanism in QCD

"Diffractive Ds production in charged current DIS" Zhongzhi Song and Kuang-Ta Chao

Yulia Furletova

Electroweak Pion and Kaon Structure Functions

Tanja Horn

- The Sullivan Process will be sensitive to u and dbar for the pion, and likewise u and sbar for the kaon.
- Logarithmic scaling violations may give insight on the role of gluon pdfs

Could we make further progress towards a flavor decomposition?

- 1) Using the Neutral-Current Parity-violating asymmetry APV
- 2) Determine xF₃ through neutral/charged-current interactions

$$F_2^{\gamma} = \sum e_q^2 x \left(q + \bar{q} \right)$$

In the parton model: $F_2^{\gamma Z} = 2 \sum e_q g_V^q x (q + \bar{q})$

Use different couplings/weights

longitudinally polarized *e*

 $x F_3^{\gamma Z} = 2 \sum_{q}^{q} e_q g_A^q x (q - \bar{q})$ Use isovector response

 $F_2^{W^+} = 2 x \left(\bar{u} + d + s + \bar{c} \right) \quad F_3^{W^+} = 2 \left(-\bar{u} + d + s - \bar{c} \right) \quad F_2^{W^-} = 2 x \left(u + \bar{d} + \bar{s} + c \right) \quad F_3^{W^-} = 2 \left(u - \bar{d} - \bar{s} + c \right)$

3) Or charged-current through comparison of electron versus positron interactions

$$A = \frac{\sigma_R^{\text{CC},e^+} \pm \sigma_L^{\text{CC},e^-}}{\sigma_R^{\text{NC}} + \sigma_L^{\text{NC}}} \qquad A = \frac{G_F^2 Q^4}{32 \pi^2 \alpha_e^2} \left[\frac{F_2^{W^+} \pm F_2^{W^-}}{F_2^{\gamma}} - \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \frac{x F_3^{W^+} \mp x F_3^{W^-}}{F_2^{\gamma}} \right]$$
²⁰

Detector requirements for Charged Current DIS

1. 4π Hadronic calorimeter

> for Pt_miss

No electron in the final state. (x,Q2) should be reconstructed from hadronic final state => good resolution

Jets measurements: Particle flow calorimeter: Attempt to measure the energy/momentum of each particle in a hadronic jet with the detector subsystem providing the best resolution

Mark Thomson, Jose Repond

Testing the chiral structure of the weak interaction with Charged Current DIS

• Backup

٠