Possible ΔR extraction from MARATHON+ data

Tyler Kutz

January 17, 2019

Relevance of R

- R is the absorption cross section ratio for longitudinally to transversely polarized photons:

$$
R=\sigma_{L} / \sigma_{T}
$$

- Knowledge of R required to obtain F_{2} from absolute cross section (typically obtained from SLAC parametrization, R1990)
- Cross section ratio only equal to F_{2} ratio if R is independent of nucleus (often assumed based on SLAC and CERN measurements)

Sensitivity to ΔR

Difference in R between nucleus A and deuterium can be found from cross section ratios using a Rosenbluth separation style method:

$$
\frac{\sigma_{A}}{\sigma_{D}}=\frac{\sigma_{A}^{T}}{\sigma_{D}^{T}}\left[1+\frac{\epsilon}{1+\epsilon R_{D}}\left(R_{A}-R_{D}\right)\right]
$$

where

$$
\epsilon=\left[1+2\left(1+\frac{\nu^{2}}{Q^{2}}\right) \tan ^{2} \frac{\theta}{2}\right]
$$

For MARATHON:

- EMC measurements in tritium, helium-3 care about $R_{T}-R_{D}, R_{H}-R_{D}$
- F_{2}^{n} / F_{2}^{p} measurement cares about $R_{T}-R_{H}$
- Could be obtained directly if R data exists for helium-3

Overview of data

Spring 2018 data (MARATHON):

	$E_{0}(\mathrm{GeV})$	$E^{\prime}(\mathrm{GeV})$	$\theta\left({ }^{\circ}\right)$
KIN 0	10.6	3.1	16.807
KIN 1	10.6	3.1	17.755
KIN 2	10.6	3.1	19.115
KIN 3	10.6	3.1	20.578
KIN 4	10.6	3.1	21.930
KIN 5	10.6	3.1	23.213

Fall 2018 data:

	$E_{0}(\mathrm{GeV})$	$E^{\prime}(\mathrm{GeV})$	$\theta\left({ }^{\circ}\right)$
R28-DIS1	4.3	1.58	28.004
R28-DIS2	4.3	1.71	28.004
R28-DIS3	4.3	1.91	28.004

x vs. Q^{2} coverage (deuterium)

D2, R28-DIS3, MARATHON KIN 0, 1, 2, 3, 4, 5

- Good overlap in $x_{B j}$
- No overlap in Q^{2}...evolve result with DGLAP equation
- DGLAP up or DGLAP down?

ϵ separation (R28-DIS3, all targets)

D2, R28-DIS3, MARATHON KIN $0,1,2,3,4,5$

H3, R28-DIS3, MARATHON KIN 0, 1, 2, 3, 4, 5

He3, R28-DIS3, MARATHON KIN 0, 1, 2, 3, 4, 5

Issues

- $\Delta \epsilon \approx 0.15$ smaller than desired, but could still be useful
- Extract ratio in similar manner to MARATHON analysis, but bin in ϵ instead of $x_{B j}$
- Concern: result could be very sensitive to small analysis changes due to short lever arm

