RC Input Cross Section Models Study

Hanjie Liu

December 12, 2018

Cross Section Models Study

For each (E_0, E_p, θ) set:

- calculate born cross section $\sigma(E_0, E_p, \theta)$
- calculate radiative cross section $\sigma^*(E_0, E_p, \theta)$ by formula:

$$\sigma^{*}(E_{0}, E_{\rho}, \theta) = \int_{0}^{T} \frac{dt}{T} \int_{E_{0min}(E_{\rho})}^{E_{0}} dE_{0}' \int_{E_{\rho}}^{E_{\rho}max(E_{s}')} dE_{\rho}' I(E_{0}, E_{0}', t) \sigma_{r}(E_{0}', E_{\rho}', \theta) I(E_{\rho}', E_{\rho}, T - t)$$
(1)

where $\sigma_r(E'_0, E'_p, \theta)$ is calculated from born cross section $\sigma(E'_0, E'_p, \theta)$ • radiative correction factor: $RC = \sigma(E_0, E_p, \theta) / \sigma^*(E_0, E_p, \theta)$

We need an input model to provide reliable born cross sections in MARATHON kinematics region.

- INEFT (Bodek Model)
 - Fit functions and data sets;
 - Nuclei cross section (DIS and Resonance);
- F1F217 (Eric Christy Model)
 - Fit functions and data sets;
 - Nuclei cross section (DIS and Resonance);
- Two models comparison on Deuterium and proton with Data

Bodek Model

- \bullet Data sets: SLAC e-p and e-d scattering experiments A, B, C; 1
- F_{2p} and F_{2d} are extracted from proton cross section and deuterium cross section by assuming $R_p = R_d = 0.18$
- The F_{2p} and F_{2d} are parametrized as follows:

$$F_2(\nu, Q^2) = A(W, Q^2) f(\omega_w) / \omega$$
⁽²⁾

where

$$f(\omega_w) = \omega_w \sum_{n=3}^{l} C_n (1 - 1/\omega_w)^n$$
(3)

and

$$\omega_w = \frac{2M\nu + a^2}{Q^2 + b^2} \tag{4}$$

- $f(\omega_w)$ in the "INEFT" is the same as what's given in ¹
- No corresponding paper is found for $A(W, Q^2)$ used in "INEFT". While $A(W, Q^2)$ describes resonance region, it's close to unity for W > 2.0 GeV

¹A. Bodek et al. Phys. Rev. D20, 1471 (1979)

Get W_{1p}, W_{2p}, W_{1d}, W_{2d} from INEFT by assuming R_p = R_d = 0.18;
Neutron structure functions:

$$W_{1n} = 2W_{1d} - W_{1p}, \quad W_{2n} = 2W_{2d} - W_{2p}$$
 (5)

• Nuclei ${}^{A}_{Z}N$ structure functions:

$$W_1 = Z \times W_{1p} + (A - Z) \times W_{1n}, \quad W_2 = Z \times W_{2p} + (A - Z) \times W_{2n}$$
 (6)

- Cross section: $\sigma = \sigma_{mott}(W_2 + 2W_1 \tan^2(\frac{\theta}{2})) \times emcfac(x, A)$
- emcfac(x, A) is the EMC effect correction factor, which has x and A dependence.

Eric Christy Proton Model

- Proton data sets:
- Proton fitting procedure ²:
 - Get reduced cross section σ_r from data:

$$\sigma_r = \frac{1}{\Gamma} \frac{d\sigma}{d\Omega dE'} = \sigma_T(W^2, Q^2) + \epsilon \sigma_L(W^2, Q^2)$$
(7)

• Fit σ_r by parametrizing $\sigma_T(W^2,Q^2)$ and $\sigma_L(W^2,Q^2)$ simultaneously

$$\sigma_{T,L}(W^2, Q^2) = \sigma_{T,L}^R + \sigma_{T,L}^{NR}$$
(8)

where $\sigma_{T,L}^{R}$ is the resonant contribution and $\sigma_{T,L}^{NR}$ is the non-resonant contribution;

• It's valid for $W^2 \ge 1.159 GeV^2$

²M.E. Christy, P.E. Bosted, arXiv:0712.3731 [nucl-ex] (2007)

• In "F1F217", to get free proton σ_T and σ_L :

- when $W^2 \leq 8.0 GeV^2$, using Eric's proton fit;
- when 8 $< W^2 \leq 10 \, GeV^2$,
 - get F₂ from Whitlow's proton fit and R from R1998; calculate σ^{dis}_L and σ^{dis}_T using F₂ and R;
 - 2 get σ_T^{res} and σ_L^{res} using Eric's proton fit;
 - **3** the σ_T and σ_L are calculated by:

$$\sigma_{T} = \frac{1}{2}(10.0 - W^{2}) * \sigma_{T}^{res} + (W^{2} - 8.0) * \sigma_{T}^{dis}$$
 (9)

$$\sigma_L = \frac{1}{2} (10.0 - W^2) * \sigma_L^{res} + (W^2 - 8.0) * \sigma_L^{dis}$$
(10)

• when $W^2 > 10.0 GeV^2$, using Whitlow's proton fit;

Eric Christy Neutron Model

- Deuterium data sets: E94-110, E00-116, E00-002, E99-118, ROSEN07, Spring03, SLAC DIS, BONUS
- Neutron model fitting procedure:
 - $\sigma^{p}_{L,T}$ is known from the proton fit $\longrightarrow F^{p}_{1,2,L}$
 - $\sigma_{L,T}^n$ have almost the same parameterization form as $\sigma_{L,T}^p \longrightarrow F_{1,2,L}^n$
 - The Fermi motion of the nucleons in deuteron is taken into account based on theory as:

$$F_2^{d(smear)}(x,Q^2) = \int f_2(y,\gamma) \sum_{N=p,n} F_2^N(y/x,Q^2) dy$$
(11)

$$F_{1}^{d(smear)}(x, Q^{2}) = \int [f_{11}(y, \gamma) \frac{2x}{y} \sum_{N=p,n} F_{1}^{N}(y/x, Q^{2}) + f_{12}(y, \gamma) \sum_{N=p,n} F_{2}^{N}(y/x, Q^{2})] dy \quad (12)$$

$$F_L^{d(smear)} = \gamma^2 F_2^{d(smear)} - 2x F_1^{d(smear)} \tag{13}$$

Eric Christy Neutron Model

• Off-shell correction $\delta^{(off)}$ is obtained by a modified Kulagin and Petti model. The corrected deuteron structure function is: 3

$$F_{1,L}^{d} = F_{1,L}^{d(smear)} / (1 - \delta^{(off)})$$
(14)

• Deuterium cross section from fit is expressed by

$$\sigma^{d} = \Gamma(\sigma_{T}^{d} + \epsilon \sigma_{L}^{d}) \propto (F_{1}^{d} + \frac{\epsilon}{2x}F_{L}^{d})$$
(15)

- By minimizing the difference of σ^d constructed from eq. (15) with respect to data, the neutron parameters are decided
- No *R_n* or *R_p* assumption is made; "CD-Bonn" potential is used when doing smearing;
- The deuterium cross section in "F1F217" is calculated in the same procedure
- $\bullet~$ It's a fit in region $Q^2 < 13.75 {\it Gev}^2$ and ${\it W}^2 < 14 {\it Gev}^2$

³CJ11, A. Accardi *et al.*, arXiv:1102.3686 [hep-ph] (2011) • (7) •

- Get free nucleon structure function F_1^p , F_L^p , F_1^n , F_L^n ;
- Apply EMC and off-shell corrections:

$$F_1^N = F_1^N * emcfac, \quad F_L^N = F_L^N * emcfacL \quad (N = p, n)$$
 (16)

- Smear F_1^p , F_L^p , F_1^n , F_L^n by gaussian function;
- The nuclei structure function:

$$F_1 = Z \times F_1^{p/A} + (A - Z) \times F_1^{n/A}, \quad F_L = Z \times F_L^{p/A} + (A - Z) \times F_L^{n/A}$$
 (17)

• Cross section: $\sigma = \Gamma(\sigma_T + \epsilon \sigma_L)$

D/p rad cross section ratio

- Bodek f1/217 0 18 0 2 0 22 0 24 0 26 0 28 0 3 0 32 0 34 0 36 0 36 Dp Bodek/f1f217 ratio 0.160.18 0.2 0.220.240.260.28 0.3 0.320.340.360.38
- born cross section ratio = $\frac{\sigma_{D2}}{\sigma_p}$
- rad cross section ratio = $\frac{\sigma_{D2}^*}{\sigma_p^*}$

• RC =
$$\frac{\sigma_{D2}/\sigma_p}{\sigma_{D2}^*/\sigma_p^*}$$

Cross Section Models Study

< □ > < 凸

Cross Section Models Study

xhi

Cross Section Models Study

December 12, 2018 14 / 25

σ^{D} comparison with Whitlow σ^D

15 / 25

σ^{p} comparison with Whitlow σ^{p}

December 12, 2018 16 / 25

F_2^p comparison with SLAC F_2^p

F_2^p comparison with SLAC F_2^p

F_2^d comparison with Whitlow F_2^d

Cross Section Models Study

F_2^d/F_2^p comparison with Global data

Cross Section Models Study

December 12, 2018 20 / 25

Current status

• Change the W^2 region used in combining with Whitlow's fit as a function of Q^2

• Since the proton fit has changed, need to refit neutron. I'm waiting for Eric's new neutron fit.

- The proton and deuterium cross sections from both models look good when Q² < 8;
- "f1f217" proton starts to fail when $Q^2 > 10$, and it's solved by combining with Whitlow's fit at lower W^2 ;
- Both of them are good as a start model for Deuterium and proton;
- Next steps:
 - go through the full procedure of bin centering and radiative correction to get D/p result with Bodek model or f1f217, then compare D/p data ratio and model ratio to tune the model;
 - check the A>2 nuclei model and the EMC correction they use;

backup

-

3

• • • • • • • •

Marathon kinematics settings

Image: A matrix and a matrix

• F2p and F2n in marathon kinematics settings from two models

