Alternative kinematic acceptance cuts

Tyler Kutz

November 1, 2018

Motivation

- Do current 1D acceptance cuts exclude edge of HRS acceptance?
- Are 2D cuts required to account for variable correlations?
- Do the distributions change with kinematic setting?

Current cuts

Previous cuts:

$$|\theta| < 0.06$$

$$|\phi| < 0.03$$

$$|\delta p| < 0.04$$

Possible alternative cuts

•
$$\phi > 0.03$$

•
$$\theta < 0.065 + 0.6\phi$$

•
$$\theta > -0.0625 - 0.6\phi$$

•
$$\left(\frac{\theta - 0.0025}{0.0625}\right)^2 + \left(\frac{\phi}{0.03}\right)^2 < 1 \quad (\phi > 0)$$

•
$$|\theta| < 0.06$$

•
$$\delta p > \begin{cases} -0.04 & (\theta < 0) \\ -0.04 - 2.61\theta^2 & (\theta > 0) \end{cases}$$

•
$$\delta p < 0.046 - 0.17\theta - 3.88\theta^2$$

•
$$\delta p > -0.042$$

•
$$\delta p < 0.047$$

•
$$\phi < 0.0271 - 0.13\delta p$$

•
$$\phi > -0.0293 + 0.1\delta p$$

Alternative cuts on ³He, kin0

Do distributions change with kinematic setting?

Kinematic comparison (θ vs. ϕ)

Kinematic comparison (θ vs. ϕ)

Kinematic comparison $(\theta \text{ vs. } \delta p)$

Kinematic comparison $(\theta \text{ vs. } \delta p)$

Kinematic comparison (ϕ vs. δp)

Kinematic comparison (ϕ vs. δp)

Comments

- To maximize acceptance while avoiding edge, 2D cuts are needed.
- However, perhaps 1D cuts are fine for MARATHON...this is at least an alternative to consider so a final decision can be made.
- Possible clipping at high kinematic settings? Need to investigate.