CZ-JP workshop, Řež, May 17, 2023

Impact of the $\pi\Sigma$ photoproduction data on the $\Lambda(1405)$ poles analysis

A. Cieplý

Nuclear Physics Institute, Řež, Czechia

- Introduction
- ② Chirally motivated $\bar{K}N$ interactions
- **3** $\pi\Sigma$ photoproduction mass spectra
 - Formalism
 - Results
- Summary

based on collaboration with P. C. Bruns, partly also with M. Mai (Bonn)

Introduction

the enigmatic nature of $\Lambda(1405)$ keeps our interest for more than 60 years

- in 1959 Dalitz and Tuan predicted a subthreshold resonance in their K-matrix analysis of K^-p data; confirmed 2 years later in the $\pi\Sigma$ mass spectra in the $K^-p \longrightarrow \pi\pi\pi\Sigma$ reaction
- $\Lambda(1405)\,1/2^-$ is much lighter than $N^*(1535)$ and a potential spin-orbit partner $\Lambda(1520)\,3/2^-$ which is difficult to explain within a standard constituent quark model
- hadronic molecule, a loosely bound $\bar{K}N$ state? a pentaquark?
- most common interpretation $\bar{K}N$ quasi-bound state submerged in $\pi\Sigma$ continuum, a result of coupled channels $\pi\Sigma \bar{K}N$ dynamics
- unitary coupled channels approaches based on effective chiral Lagrangian generate two poles related to Λ(1405) (Oller, Meißner in 2001)
- model parameters fitted to experimental data available at energies from K⁻p threshold up, providing varied theoretical predictions for subthreshold energies and in the isovector sector

Introduction

• In the K^-p reactions data, the $\Lambda(1405)$ is hidden below the threshold. The resonance can be seen in processes, where $\pi\Sigma$ re-scatter in the final state, e.g.

In this two meson protoproduction reaction the K^+ meson carries away momentum, enabling a scan in the invariant mass of the $\pi\Sigma$ system down to its production threshold.

• topics related to $\Lambda(1405)$ include \bar{K} -nuclei and role of strangeness in dense nuclear matter (e.g. neutron stars)

More in reviews:

T. Hyodo, D. Jido - Prog. Part. Nucl. Phys. 67 (2012) 55 M. Mai - Eur. Phys. J. Spec. Top. 230 (2021) 6, 1593

Chirally motivated $\bar{K}N$ interactions

 $\bar{K}N - \pi\Sigma$ system (+ add-ons, mostly more MB) meson octet - baryon octet coupled channels interactions

involved channels $\pi\Lambda$ $\pi\Sigma$ $\bar{K}N$ $\eta\Lambda$ $\eta\Sigma$ $K\Xi$ thresholds (MeV) 1250 1330 1435 1660 1740 1810

- strongly interacting multichannel system with an s-wave resonance, the $\Lambda(1405)$, just below the K^-p threshold
- modern theoretical treatment based on effective chiral Lagrangians
- effective potentials constructed to match the chiral meson-baryon amplitudes up to LO or NLO order
- Lippmann-Schwinger (or Bethe-Salpeter) equation to sum the major part of the perturbation series

N. Kaiser, P.B. Siegel, W. Weise - Nucl. Phys. A 594 (1995) 325

 K^-p data fits: low energy x-sections, threshold BRs, kaonic hydrogen 1s level

Model predictions - K^-N amplitudes

 K^-p and K^-n elastic amplitudes

 B_2 (dotted, purple), B_4 (dot-dashed, red), M_I (dashed, blue), M_{II} (long-dashed, green), P (dot-long-dashed, violet), BCN (dot-dot-dashed, brown), KM (continuous, black)

Model predictions - $\Lambda(1405)$ resonance

 Mai:2014xna(2) Mai:2014xna(4) ▲ Ikeda:2011pi ▼ Sadasivan:2018ji Guo:2012vv Feijoo:2018der O Borasoy:2005ie ∧ Oter:20005 → Jido:2003cb Morimatsu:2019wvk/B Morimatsu:2019wvk/C Oset:2001cn Roca:2013av(1) Roca 2013av(2) Anisovich:2020lec(2) Fernandez-Raminez:2015tfa Ciegly:2011ng Shevchenko:2011o Re W_{CMS} [MeV]

Hyodo, Jido - Prog. Part. Nucl. Phys. 67 (2012) 55

all recent (year ≥ 2000) predictions
M. Mai - Eur. Phys. J. Spec. Top. 230 (2021) 6, 1593

- the *higher* pole around 1425 MeV couples more strongly to $\bar{K}N$, the *lower* pole is much further from the real axis and has larger coupling to $\pi\Sigma$
- illustrative picture: $\bar{K}N$ bound state submerged in $\pi\Sigma$ continuum (W. Weise)
- lacktriangle all models tend to agree on the position of the $\bar{K}N$ related pole
- the K^-p reactions data are not very sensitive to the position of the $\pi\Sigma$ related pole

formalism outlined in: P. C. Bruns - arXiv:2012.11298 [nucl-th] (2020) application to $\pi\Sigma$ mass spectra predictions:

P. C. Bruns, A. C., M. Mai - Phys. Rev. D 106 (2022) 7, 074017

leading-order BChPT used to derive expressions for the photoproduction amplitude \mathcal{M} , constructed from tree level graphs:

Weinberg-Tomozawa (WT)

Born term (BT) - B1, B2

anomalous (AN)

lines: directed - baryons, dashed - pseudoscalar mesons; \otimes symbols - photon insertions $5 + (2 \times 7) + 1 = 20$ tree graphs, 16 independent \mathcal{M}_j structure functions

Final state interaction of the MB pair needs to be accounted for:

 $\pi\Sigma - \bar{K}N$ coupled channels models provide the $f_{\ell\pm}^{c',c}(M_{\pi\Sigma})$ amplitudes, that describe the scattering from channel c to channel c' ($c,c'=\pi\Lambda,\,\pi\Sigma,\,\bar{K}N,\,\eta\Lambda,\ldots$) state-of-the-art approaches based on LO+NLO ChPT, complying with unitarity

$$\operatorname{Im}(f_{\ell\pm}) = (f_{\ell\pm})^{\dagger}(|\vec{p}^*|)(f_{\ell\pm}) ,$$

our aim: implement f_{0+} amplitudes to describe MB s-wave pairs produced in $\gamma p \to K^+ MB$ photoproduction

We need to project the $\mathcal M$ amplitude on the $MB_{\ell=0}$ state ...

There are four independent structure functions $\mathcal{A}_{0+}^i(s,M_{\pi\Sigma}^2,t_K)$ constructed from \mathcal{M}_j , projected on s-wave and satisfying the partial-wave unitarity relation

$$\operatorname{Im}(\mathcal{A}_{0+}^{i}) = (f_{0+})^{\dagger}(|\vec{\rho}^{*}|)(\mathcal{A}_{0+}^{i}), \quad i = 1, \dots, 4.$$

Neglecting $\ell > 0$ contributions, we get

$$\frac{d^2\sigma}{d\Omega_K dM_{\pi\Sigma}} = \frac{|\vec{q}_K||\vec{p}_{\Sigma}^*|}{(4\pi)^4 s|\vec{k}|} |\mathcal{A}|^2,$$

$$\begin{split} 4|\mathcal{A}|^2 &= (1-z_K) \left| \mathcal{A}_{0+}^1 + \mathcal{A}_{0+}^2 \right|^2 + (1+z_K) \left| \mathcal{A}_{0+}^1 - \mathcal{A}_{0+}^2 \right|^2 \\ &+ (1-z_K) \left| \mathcal{A}_{0+}^1 + \mathcal{A}_{0+}^2 + \frac{2|\vec{q}_K|(1+z_K)}{M_K^2 - t_K} \left((\sqrt{s} + m_N) \mathcal{A}_{0+}^3 + (\sqrt{s} - m_N) \mathcal{A}_{0+}^4 \right) \right|^2 \\ &+ (1+z_K) \left| \mathcal{A}_{0+}^1 - \mathcal{A}_{0+}^2 - \frac{2|\vec{q}_K|(1-z_K)}{M_K^2 - t_K} \left((\sqrt{s} + m_N) \mathcal{A}_{0+}^3 - (\sqrt{s} - m_N) \mathcal{A}_{0+}^4 \right) \right|^2, \end{split}$$

with $z_K \equiv \cos \theta_K$, θ_K being the angle between \vec{q}_K and \vec{k} in the overall c.m. frame.

unitarized amplitudes for $\gamma p \to K^+ MB$ will be taken as the coupled-channel vector

$$[\mathcal{A}_{0+}^i] = [\mathcal{A}_{0+}^{i(\mathrm{tree})}] + [f_{0+}] \left[8\pi M_{\pi\Sigma} G(M_{\pi\Sigma})\right] \left[\mathcal{A}_{0+}^{i(\mathrm{tree})}\right]$$

The second term represents the final-state MB rescattering and $G(M_{\pi\Sigma})$ is a diagonal channel-space matrix with entries given by regularized loop integrals

$${
m i}\; G^{c=MB}(M_{\pi\Sigma}) = \int_{{
m reg.}} \frac{d^4 I}{(2\pi)^4} \frac{1}{((p_{\Sigma}+q_{\pi}-I)^2-m_B^2+{
m i}\epsilon)(I^2-M_M^2+{
m i}\epsilon)}$$

two coupled channels approaches for the f_{0+} amplitudes:

Bonn B2, B4 models - M.Mai, U.-G.Meißner, Eur. Phys. J. A 51 (2015) 30 BW model - D.Sadasivan, M.Mai, M.Döring, Phys. Lett. B 789 (2019) 329–335 dimensional regularization used in $G(M_{\pi\Sigma})$, mass scales μ_c

Prague P model - P.C.Bruns, A.C., Nucl. Phys. A 1019 (2022) 122378 Yamaguchi form factors used in $G(M_{\pi\Sigma})$, inverse ranges α_c

CLAS data: K. Moriya et al. - Phys. Rev. C 87 (2013) 035206

Result: different models provide varied predictions of the $\pi\Sigma$ mass spectra

$\pi\Sigma$ photoproduction: FSI impact

CLAS data (2013) by Moriya et al. c.m. energy $W=\sqrt{s}=2.0~{\rm GeV}$ P model used for the MB amplitudes

- only WT, no FSI: small (or zero for $\pi^+\Sigma^-$) cross sections
- WT+BT+AN, no FSI: the cross sections remain flat, the $\pi^-\Sigma^+$ one reaches magnitude comparable with the data
- addition of FSI: MB rescattering is responsible for the peak structure $\pi^0\Sigma^0$ and $\pi^+\Sigma^-$ reproduced rather well Born terms move the peak to lower energies

parameter-free predictions! no adjustment to the f_{0+} amplitudes

$\pi\Sigma$ mass spectra - model dependence $_{\rm w=2.4\,GeV}^{\rm KS}$

Results - FSI not fixed

First time fits to combined K^-p reactions and $\pi\Sigma$ photoproduction data with the FSI no longer fixed at a particular $\pi\Sigma - \bar{K}N$ model parameters setup.

A. C., P. C. Bruns - submitted to NPA, arXiv:2305.06205

- The P model used for the MB → πΣ amplitude represented by the MB rescattering T bubble:
 6 regularization scales α_c, 6 NLO couplings (b₀, b_F, d_{1...4})
- Tree level photoproduction amplitudes representing the $\mathcal M$ bubble multiplied by MB and K^+ form factors: 6 regularization scales β_c (3 fixed), and β_K
- Yamaguchi forms adopted for all form factors $g_c(k^*) = 1/[1 + (k^*/\alpha_c)^2]$ etc.
- fitted data: kaonic hydrogen characteristics, K^-p threshold branching ratios, K^-p reaction cross sections, $\pi\Sigma$ photoproduction mass distributions at $\sqrt{s}=2.1~{\rm GeV}$

CLAS data

$$K^-p$$
 threshold
 K^-p cross sections
 all

 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{+}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal{U}}$
 $\stackrel{\circ}{\mathcal$

$$\chi^2/\text{dof} = \frac{\sum_{i} N_i}{N_{obs}(\sum_{i} N_i - N_{par})} \sum_{i} \frac{\chi_i^2}{N_i}, \quad N_{obs} = 13, \quad N_{par} = 16$$

Results - FSI not fixed

results for 4 selected solutions (local χ^2 minima):

P0 $\chi^2/\mathrm{dof} \approx$ 5.40, MB FSI sector fixed to the P model setting, 4 parameters

P1 $\chi^2/\mathrm{dof} \approx$ 3.34, both, FSI and tree level photoproduction sectors varied, 16 par.

P2 $\chi^2/\text{dof} \approx 4.41$, same as for P1

P3 $\chi^2/\text{dof} \approx 4.72$, same as for P1

K^-p threshold data:

$K^-p \rightarrow MB$ total cross sections

$\Lambda(1405)$ poles predictions

z_1 [MeV]	<i>z</i> ₂ [MeV]	z ₃ [MeV]
(1353,-43)	(1428,-24)	(1677,-14)
_	(1421,-43)	_
(1347,-71)	(1425,-46)	(1725, -57)
(1345,-58)	(1425,-45)	(1665,-7.1)
	— (1347,-71)	— (1421,-43) (1347,-71) (1425,-46)

- The P1 model provides the best χ^2 but was found unphysical due to generating an extremely narrow I=1 resonance close to $\pi\Sigma$ threshold. It is also missing the *lower mass* $\Lambda(1405)$ and the $\Lambda(1670)$ poles.
- Apparently, the K⁻p reaction (and to some extend threshold) data are not very sensitive to the pole positions. Similar observations by Revai (with a non-chiral model), Shevchenko (phenomenology), or Anisovich (partial wave analysis), all indicating good reproduction of the K⁻p data with one-pole Λ(1405) models.
- All our models agree on the position of the higher mass $\Lambda(1405)$ pole. The lower mass $\Lambda(1405)$ pole seems to be constrained around $z_1 \approx (1350, -60)$ MeV.
- The applied $\pi\Sigma$ photoproduction formalism may not be realistic: *p*-waves, vector meson contributions?

$\pi\Sigma$ mass spectra predictions

$\pi\Sigma$ mass spectra predictions

- Despite being rather simple, the model reproduces reasonably well the $\pi^0\Sigma^0$ and $\pi^-\Sigma^+$ mass distributions.
- The energy dependence seems to be under control thanks to introducing the g_{K+} form-factor in the tree level photoproduction amplitudes.
- ullet Our model fails to reproduce the $\pi^-\Sigma^+$ mass distributions.
- Much better agreement with CLAS photoproduction data can be achieved either by an ad-hoc modelling of the photoproduction dynamics (Roca, Oset, Mai, Meißner) or by employing much more parameters, and keeping some of them energy dependent (Nakamura, Jido).
- Currently, we work on enhancing the photo-kernel by including processes involving vector mesons (in particular K^*) and decuplet baryons.

Summary

- The up-to-date (NLO) chirally motivated $\pi\Sigma \bar{K}N$ models provide very different predictions for the MB amplitudes at energies below $\bar{K}N$ threshold.
- The $\Lambda(1405)$ energy region can be accessed by studying processes involving $\pi\Sigma$ rescattering in the final state. The $\pi\Sigma$ photoproduction on protons represents such a process where the MB rescattering plays a crucial role as our results demonstrate.
- Our approach to the two-meson photoproduction implements coupled-channel unitarity, low-energy theorems from ChPT and gauge invariance. We have revealed large variations when different models for the MB amplitudes are adopted.
- Our new results of fits that combine the K^-p reactions data with those on the $\pi\Sigma$ photoproduction can achieve a reasonable χ^2/dof but are not satisfactory especially for the $\pi^-\Sigma^+$ mass distributions.
- The presented models tend to limit the mass of the *lower mass* Λ (1405) pole and yield a larger width of the pole that couples more strongly to $\bar{K}N$. A possible relation to a large absorption width found for the $\bar{K}NN$ bound state at J-PARC?
- We need a more precise experimental data on low energy K^-p reactions as the current ones are not too restrictive on the theoretical models. Our photoproduction model (its kernel) should also be improved.

EXTRAS: Prague model

$$\begin{split} \mathcal{L}_{\textit{MB}}^{(1)} &= i \langle \bar{B} \gamma_{\mu} [D^{\mu}, B] \rangle - \textit{M}_{0} \langle \bar{B} B \rangle + i \frac{\textit{Ws}}{F_{0}^{2}} \eta_{0}^{2} \left(\langle [D^{\mu}, \bar{B}] \gamma_{\mu} B \rangle - \langle \bar{B} \gamma_{\mu} [D^{\mu}, B] \rangle \right) \\ &+ \frac{1}{2} D \langle \bar{B} \gamma_{\mu} \gamma_{5} \{ u^{\mu}, B \} \rangle + \frac{1}{2} F \langle \bar{B} \gamma_{\mu} \gamma_{5} [u^{\mu}, B] \rangle + \frac{1}{2} \frac{\textit{D}_{s}}{2} \langle \bar{B} \gamma_{\mu} \gamma_{5} B \rangle \langle u^{\mu} \rangle \end{split}$$

two extra terms due to inclusion of the η_0 field:

- η_0 baryon contact term proportional to w_s
- ullet η_0 baryon axial coupling term proportional to D_s

$$\begin{split} \mathcal{L}^{(2)}_{MB} &= b_D \langle \bar{B}\{\chi_+,\,B\}\rangle + b_F \langle \bar{B}[\chi_+,\,B]\rangle + b_0 \langle \bar{B}B\rangle \langle \chi_+\rangle \\ &+ d_1 \langle \bar{B}\{u_\mu,\,[u^\mu,\,B]\}\rangle + d_2 \langle \bar{B}[u_\mu,\,[u^\mu,\,B]]\rangle + d_3 \langle \bar{B}u_\mu\rangle \langle u^\mu B\rangle + d_4 \langle \bar{B}B\rangle \langle u_\mu u^\mu\rangle \\ &+ \big(\text{some more } c_{D,F,0} \text{ and } d_{5,6,7} \text{ terms}\big) \end{split}$$

$$c_{D,F,0}=d_{5,6,7}=0$$

one-mixing-angle scheme ($\vartheta=-15.5^\circ$) to describe the singlet-octet mixing:

$$\eta_8 = \eta \cos \vartheta + \eta' \sin \vartheta, \quad \eta_0 = \eta' \cos \vartheta - \eta \sin \vartheta$$

EXTRAS: Prague model

$$V_{ij}(k, k'; \sqrt{s}) = g_i(k^2) v_{ij}(\sqrt{s}) g_j(k'^2)$$

$$v_{ij}(\sqrt{s}) = f_{0+,\mathrm{tree}}(s) = \frac{\sqrt{E_i + M_i}}{F_i} \left(\frac{C_{ij}(s)}{8\pi\sqrt{s}}\right) \frac{\sqrt{E_j + M_j}}{F_j}$$

- inter-channel energy dependent couplings C_{ij} determined by the SU(3) chiral Lagrangian
- Yamaguchi form factors $g_j(k)=1/[1+(k/\alpha_j)^2]$ used to account naturally for the off-shell effects with inverse ranges α_j introduced as free model parameters

Lippmann-Schwinger equation used to solve exactly the loop series

$$f_{ij}(k, k'; \sqrt{s}) = g_i(k^2) \left[(1 - v \cdot G(\sqrt{s}))^{-1} \cdot v \right]_{ij} g_j(k'^2)$$

The loop function $G(\sqrt{s})$ is diagonal in the channel space and is regularized by the Yamaguchi form factors.

EXTRAS: Fitted parameters

parameter	P0	P1	P2	P3
b ₀	0.525*	-0.833	-0.596	-0.387
b_F	-0.077*	-0.061	-0.106	-0.036
d_1	-0.119*	0.835	-0.169	-0.084
d_2	0.074*	-0.275	0.037	0.001
d_3	0.096*	-0.637	0.026	-0.155
d_4	0.556*	0.481	-0.529	-0.423
$\alpha_{\pi \Lambda}$	400*	322	276	301
$\alpha_{\pi\Sigma}$	509*	1118	480	647
$\alpha_{ar{K}N}$	752*	467	809	1109
$\alpha_{\eta\Lambda}$	979*	1217	500	1500
$\alpha_{\eta\Sigma}$	797*	500	500	558
α _K Ξ	1079*	778	815	1063
$\beta_{\pi\Lambda}$	558	455	1500	1500
$\beta_{\pi\Sigma}$	205	207	212	217
$\beta_{\bar{K}N}$	1393	606	1500	931
β_{K^+}	930	1250	696	697
χ^2/dof	5.40	3.34	4.41	4.72

EXTRAS: Comparison with other approaches

our photoproduction amplitude constructed from four \mathcal{A}_{0+}^i amplitudes

$$[\mathcal{A}_{0+}^i(s,M_{\pi\Sigma})] = [\mathcal{A}_{0+}^{i(\mathrm{tree})}(s,M_{\pi\Sigma})] + [f_{0+}(M_{\pi\Sigma})][8\pi M_{\pi\Sigma}G(M_{\pi\Sigma})][\mathcal{A}_{0+}^{i(\mathrm{tree})}(s,M_{\pi\Sigma})]$$

L. Roca, E. Oset - Phys. Rev. C 87 (2013) 055201 M. Mai, U.-G. Meißner - Eur. Phys. J. A 51 (2015) 30 makeshift photoproduction amplitude $[\mathcal{A}] = [f_{0+}] [8\pi M_{\pi\Sigma} G(M_{\pi\Sigma})] [C(\sqrt{s})]$

S.X. Nakamura, D. Jido - PTEP 2014 (2014) 023D01 similar to our approach with some non-relativistic simplifications, additional contributions from K^* exchange, phenomenological energy dependent contact terms, and adjustments to the first loop function and to the photoproduction vertex

```
E. Wang et al. - Phys. Rev. C 95 (2017) 015205 focus on triangle singularity contribution \gamma p \to N^*(2030) \to K^*\Sigma \to K^+\Lambda(1405) combined with K, K^* meson exchanges and a contact term \mathcal{A} = \mathcal{A}^{\rm tree} = a \, t_{\rm triangle} + b \, t_{K\, \rm exchange} + c \, t_{K^*\, \rm exchange} + d \, t_{\rm contact}
```

All these fit a good number of model parameters to reproduce the CLAS data. In contrast, we just demonstrated what can be achieved with a parameter-free approach based on (unitarized) ChPT.

EXTRAS: Nakamura, Jido

20 subtraction constants, 15 energy dependent complex couplings λ_n^j , common form factor scale $\beta_c=\beta_{K^+}=\Lambda$