Preliminary $\frac{F_{2}^{n}}{F_{2}^{p}}$ From Pass 1 Analysis
 Tong Su
 MARATHON Analysis Day

Introduction

- $\frac{F_{2}^{n}}{F_{2}^{p}}$ are extracted from $\frac{\sigma(D 2)}{\sigma(H 1)}$ and $\frac{\sigma(H 3)}{\sigma(H e 3)}$
- The cross section ratio is calculated in the same way, as presented at the last analysis day. Details will not be repeated in this presentation
- Modified Tritium density has been applied
- For the cross section ratio, only the statistical error and a random $+-0.5 \%$ point to point error is included
- All results are just based on the Pass1 analysis and are very preliminary. A variety of details still need to be refined

From cross-section ratio to $\frac{F_{2}^{n}}{F_{2}^{p}}$

- Kulagin-Petti model is used for both of the $\frac{F_{2}^{n}}{F_{2}^{p}}$ extraction
- From KP model: $\left\{\begin{array}{l}R_{2}=\frac{F_{2}^{D}}{F_{2}^{n}+F_{2}^{p}} \\ R_{31}=\frac{F_{2}^{H 3}}{2 F_{2}^{n}+F_{2}^{p}} \quad \text { super } \Re=\frac{R_{32}}{R_{31}} \\ R_{32}=\frac{F_{2}^{H e}}{F_{2}^{n}+2 F_{2}^{p}}\end{array}\right.$

$$
\cdot \frac{F_{2}^{n}}{F_{2}^{p}}=\frac{\mathrm{D} / \mathrm{p}}{R_{2}}-1 \quad \frac{F_{2}^{n}}{F_{2}^{p}}=\frac{2 \Re-\mathrm{He}^{3} / \mathrm{H}^{3}}{2\left(\mathrm{He}^{3} / \mathrm{H}^{3}\right)-\Re}
$$

Kulagin-Petti Model

S. A. Kulagin and R. Petti, Nucl. Phys. A 765, 126 (2006).

$$
\begin{aligned}
& \text { Available online at www.sciencedirect.com } \\
& \text { science (d)direct } \\
& \text { Nuclear Physics A } 765(2006) 126-187
\end{aligned}
$$

\square

Global study of nuclear structure functions

$$
\text { S.A. Kulagin }{ }^{\text {a,* }}, \text { R. Petti }{ }^{\text {b }}
$$

a Institute for Nuclear Research, 117312 Moscow, Russia
${ }^{\mathrm{b}}$ CERN, CH-1211 Genéve 23, Switzerland
Received 18 February 2005; received in revised form 17 October 2005; accepted 19 October 2005 Available online 14 November 2005

S. A. Kulagin and R. Petti, Phys. Rev. C 82,054614(2010)

PHYSICAL REVIEW C 82, 054614 (2010)

Structure functions for light nuclei

S. A. Kulagin ${ }^{1, *}$ and R. Petti ${ }^{2, \dagger}$
${ }^{1}$ Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia ${ }^{2}$ Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA (Received 28 April 2010; revised manuscript received 10 July 2010; published 19 November 2010)

We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including ${ }^{2} \mathrm{H},{ }^{3} \mathrm{He}$ ${ }^{4} \mathrm{He},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C}$, and ${ }^{14} \mathrm{~N}$. In order to verify the consistency of available data, we calculate the χ^{2} deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than ${ }^{3} \mathrm{He}$. We also discuss the extraction of the neutron/proton structure function ratio F_{2}^{n} / F_{2} from the nuclear ratios ${ }^{3} \mathrm{He} /{ }^{2} \mathrm{H}$ and ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$. Our analysis shows that the E03-103 data on ${ }^{3} \mathrm{He} /{ }^{2} \mathrm{H}$ require a renormalization of about 3% in order to be consistent with the F_{2}^{n} / F_{2}^{p} ratio obtained from the NMC experiment. After such a renormalization, the ${ }^{3} \mathrm{He}$ data from the E03-103 and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion, and off-shel corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

DOI: 10.1103/PhysRevC.82.054614 PACS number(s): 25.30.Mr, 25.30.Rw, 24.85.+p, 13.60.Hb

MARATHON $\frac{\sigma(D 2)}{\sigma(H 1)}$

Bodek data : A. Bodek et al., Phys. Rev. D20, 1471 (1979).

KP model for $\mathbf{R}_{\mathbf{2}}$

$$
\frac{F_{2}^{n}}{F_{2}^{p}} \text { from } \frac{\sigma(\mathrm{D} 2)}{\sigma(\mathrm{H} 1)}
$$

MARATHON $\sigma(H 3)$
 $\sigma(\mathrm{He} 3)$

KP model for super \mathbf{R}

$\frac{F_{2}^{n}}{F_{2}^{p}}$ from $\frac{\sigma(\mathrm{H} 3)}{\sigma(\mathrm{He} 3)}$
Comments for the Normalization :

1) Just use the two points $x \sim 0.3$ to do the Normalization
2) $\min \sum\left(\left(\frac{y}{\sigma^{2}}\right)_{\text {target }}-C *\left(\frac{y}{\sigma^{2}}\right)_{\text {object }}\right)^{2}$
3) extract the Normalization factor of t / h according to C

Quick Check of the Bin Center Correction

- Goal for this analysis is just to have a general idea of the magnitude of the bin center correction
- KP model is also used for this quick check
- For each individual bin, $B C C F=\frac{\sigma_{\text {model }}^{\text {ave }}}{\sigma_{\text {model }}^{B C}}$
- For the $\mathrm{t} / \mathrm{h}: B C C F_{t / h}=\frac{B C C F_{\mathrm{H} 3}}{B C C F_{\mathrm{He}}}$
- According to this analysis ,the BFFC for the t / h ratio is smaller than 0.1%

Bin Center Correction Factor

Bin Center Correction Factor for the ratio

Thanks!

