

Analysis of BigBite vs. HRS

John Arrington Argonne National Lab

Rate calculations by Zhihong Ye (ANL) Backgrounds from D. Gaskell (JLab)

> Tritium family readiness review Newport News, VA Mar 16, 2016

Updated evaluation of MARATHON runplan

Some aspects of the experiment differ from the original proposal

- Final target design (lower luminosity, thicker windows)
- No collimators to exclude target windows
- SOS Quadrupoles on HRS spectrometers

BigBite+HRS vs 2×**HRSs**

Acceptance for HRS is about 5msr, BigBite is ~40msr; Naïve gain is factor 45/10

- Large momentum bite used to take 2 x_{Bj} points at a time
- BigBite limited to larger scattering angles
 - Total rates and pi/e ratios become too high at small angle
 - Acceptance and resolution decrease at large E'
 - HRS can run at lower angle (lower Q² and W²), significantly increasing cross section
 - HRS better than BB at low-to-moderate x, need to keep Q², W² large enough at large x

•Large x: HRS momentum bite +/-4.5%; BB is +/-2% (to keep $\Delta x=0.04$ bins)

Relatively small difference in Figure of Merit for 2xHRS and BB+HRS BigBite needs additional time for commissioning, removal Risk of luminosity limitations from physics/others backgrounds Work exclusion zone around target makes BigBite work difficult

Updated runtime estimates (Zhihong Ye)

Accounting for all target/detector changes from original proposal Comparison of HRS and BigBite runplan options

F2ALLM97 cross section, estimated 20% Rad. Corr., W²>3 GeV² cut

Key assumptions:

Modified target design (20% reduction in average luminosity)

Cut on central 15cm of target (40% loss) to endcap contribution [vs. collimators]

10% loss of HRS acceptance for use of SOS Quad

Assumed 20% (30%) deadtime/inefficiency for HRS (BigBite)

40 msr solid angle (-10%) for BigBite

-Proposal assumed 45msr (accounting for reduction due to detector repositioning)

-Nominal: ~75msr at small E', reduced factor of 2-3 at large E'

-Updated runplan has all high-x data at larger E' values

"Final" runplans: BB checkout/optics and 'new' HRS optics: ~1 week (3 PAC days) No time for BigBite removal

Other issues

BB estimates based on small momentum bite (+/-4.5%), large solid angle

Other issues

BB estimates based on small momentum bite (+/-4.5%), large solid angle

•Fixed E' bins correspond to lower average x_{bi} due to rapidly falling cross section

х _{Вј}	< x _{Bj} >	W ²	E'	θ	from proposal
0.87	0.80	3.10	2.07	47.10	
0.83	0.80	3.87	1.48	57.10	
0.79	0.78	4.71	1.41	57.10	
0.75	0.75	5.25	1.58	51.90	

Initial estimates: Yields lower <x> values for the points

Final estimates: binned data in x_{Bi}

- Reduces average cross section at large x
- Significant effect for small W² values

Runtime summary: minimal adjustments

Experimental Settings	Total Time [Days] (<x>_{max})</x>	Excluding $x = 0.87$
1. HRS+BB as proposed	29 (0.87)	23 (0.83)
2. HRS+BB updated	116 (0.80)	96 (0.80)
3. HRS+BB updated (lower W ²)	96 (0.80)	77 (0.80)
4. 2xHRS, same settings	381 (0.83)	276 (0.82)
5. 2xHRS, W ² minimized	116 (0.83)	11 (0.78)
5b. HRS with intermediate W ² (estimat	20 (0.80-0.81)	

Tweaked kinematics: reduced to **77 days**, x_{max} =**0.8** [8 x_{Bj} points, 4 BigBite angles]

- Modest W² reduction at most x values
- Could save time by reducing ²H statistics (limit ratios to deuterium to lower x)

HRS only: 20 days, x_{max}=0.8

- 20 days is a slight underestimate used 4 GeV for both spectrometers
- Larger W² reduction for high-x values

Runtime summary: minimal adjustments

Experimental Settings	Total Time [Days] (<x>_{max}</x>) Excluding x = 0.87
1. HRS+BB as proposed	29 (0.87)	23 (0.83)
2. HRS+BB updated	116 (0.80)	96 (0.80)
3. HRS+BB updated (lower W ²)	96 (0.80)	77 (0.80)
3c. HRS+BB at highest x	38 (0.80) [31 (0.84) wit	h x-binning]
4. 2xHRS, same settings	381 (0.83)	276 (0.82)
5. 2xHRS, W ² minimized	116 (0.83)	11 (0.78)
5b. HRS with intermediate W ² (estimat	20 (0.80-0.81)	

Tweaked kinematics: reduced to **77 days, x_{max}=0.8** [8 x_{Bi} points, 4 BigBite angles]

- Modest W² reduction at most x values
- Could save time by reducing ²H statistics (limit ratios to deuterium to lower x)

HRS only: 20 days, x_{max}=0.8

- 20 days is a slight underestimate used 4 GeV for both spectrometers
- Larger W² reduction for high-x values

BigBite parked at one angle: 39 days, x_{max} =0.8

Final evaluation, looking at data in x bins gives 31 days, x_{max}=0.84

Refined runplans:

- ~20 PAC production data taking to allow time for checkout, calibration, optics, target luminosity scans, positron/pion/dummy target runs, etc...
- No time assumed for BigBite removal (done between run periods)
- BigBite has to run at fixed angle to make up for lost FOM \rightarrow new constraints
 - Angle must give acceptable rates at high x
 - Must give acceptable backgrounds at low x
 - Low-x acceptance limited by angle and momentum acceptance (E' > 1 GeV)

Initial background/ trigger rate estimates (Z.Ye and D.Gaskell)

- 47 degrees: 10 kHz (probably higher) total event rate, pion dominated
- Low E' (x<0.6) \rightarrow pi/e ratios of 100-500, low-x limited by offline PID

Initial background/ trigger rate estimates (Z.Ye and D.Gaskell)

- 47 degrees: 10 kHz (probably higher) total event rate, pion dominated
- Low E' (x<0.6) \rightarrow pi/e ratios of 100-500, low-x limited by offline PID

Refined runplans:

- ~20 PAC production data taking to allow time for checkout, calibration, optics, target luminosity scans, positron/pion/dummy target runs, etc...
- No time assumed for BigBite removal (done between run periods)
- BigBite has to run at fixed angle to make up for lost FOM \rightarrow new constraints
 - Angle must give acceptable rates at high x
 - Must give acceptable backgrounds at low x
 - Low-x acceptance limited by angle and momentum acceptance (E' > 1 GeV)
- HRS only:
 - x=0.79 with W^2>4 and full statistics
 - x=0.82 with W^2>3.5, 50% statistics
 - [HRS at maximum momentum for nearly all settings]
- BB version:
 - x=0.81 with W^2>4 and full statistics
 - x=0.84 with W^2>3.5, 50% statistics
 - HRS does x<0.5, and some 0.5 < x < 0.75 overlap points

Summary

- HRS-only (Left+Right)
 - Cover 0.20<x<0.80 at W²>4, x=0.83 at lower W², reduced statistics
 - Somewhat lower W² values compared to BigBite option
- Bigbite+HRS runplan (BB fixed at $\theta \approx 47$ degrees)
 - 0.45 < x < 0.83, larger x with reduced statistics (better W²)
 - HRS covers low x region

BigBite option gives slightly greater x coverage, but brings significant risk

- May need to use beam time for BigBite removal (not accounted for)
- Offline pion rejection may limit low-x coverage in BB
- Online pion rejection could limit beam current (or yield greater sensitivity position-dependent or time-dependent efficiencies)
- Luminosity could be limited by background rates in unshielded detectors
- Potential issues working on BigBite due to 'work exclusion zone'

Considered too great of a risk for at best a small increase in x (W²)

