JLab hypernuclear collaboration meeting 2022

Modification (Hall-A → Hall-C)

The University of Tokyo Sho Nagao

2022/12/13

- Setup plan of original proposal and Hall-C exp.
- Modifications
- Update of Yield, Resolution, Background estimation

Summary

Original Setup (Hall-A)

Beam Energy	4.24 GeV
Beam Intensity	50 / 25 μA
Beamtime	21 / 20 PA

4.24 GeV (2-pass) 50 / 25 μA for ^{40,48}Ca / ²⁰⁸Pb 21 / 20 PAC days for ^{40,48}Ca / ²⁰⁸Pb

	Scattered Electron	Associated Kaon
Momentum	2.74 GeV/c	1.2 GeV/c
Spectrometer	PCS(e') + HRS	PCS(K ⁺) + HKS
Angle	6.5 deg	14 deg
$\Delta p/p$	1×10 ⁻⁴	3×10 ⁻⁴
Solid Angle	5 msr	8 msr
Bending	Vertical	Horizontal
Δz (rms)	1 cm	N/D

Mass resolution : 0.8 MeV/c²

Particle Charge Separator (PCS)

		PCS(K)	PCS(e)	
Weight		7.8 t	8.0 t	
Max. Field		1.3 T		
Main Coil	Geometry	16×16/Φ10		
	Turns	96 / coil		
Current		1700 A		
Voltage		106 V $_{/eachmag.}$		
Δt		20°C		
Corr. Coil	Geometry	14×9/10×5		
Turns		88 / coil		
	Current	1000 A		
	Voltage	97 V $_{/each mag.}$		
Δt		11°C		

New setup (Hall-C)

What to be modified

Yield, Resolution, Background

At least one spectrometer HRS must be changed. Expected hypernuclear yield, peak resolution, background condition will be change.

Vertical Bending Spectrometer

Z position reconstruction is very important to measure hypernuclear peaks with good resolution. Vertical bending spectrometer provides z information.

Connection of PCS(e')

PCS(e') was designed to connect with HRS. PCS vacuum and sieve collimators must be updated. Optics of e' arm also must be updated.

PCS Power Supply

PCS powers which are 1700 A / 120 V for Main coils and 1000 A / 110 V for collection coils. SBS power supply was planned in the Hall-A experiment.

Target Can

Target mounter system is necessary. This part doesn't change a lot with the Hall-A experiment.

Expected ⁴⁰^AK spectrum

Yield Estimation

Hypernuclear yield would be decreased by a factor of "1/3" due to the smaller VP flux.

 $\Gamma(E, \theta) = (5.0 \times 10^{-6}) / (1.5 \times 10^{-5}) = 1/3$

Beam energy effect: $\times 0.8$ e' Angular effect: $\times 0.4$

	³ ∧H	${}^{4}{}_{\wedge}H$	⁶ ∧He	¹¹ ∧Be	¹² [^] B	⁴⁰ ^K	⁴⁸ ^K	²⁰⁸ ^TI
Target Thickness (mg/cm ²)	165	228		100		77	7.5	100
Beam Current (µA)	20	20			50			25
Beamtime (days)	25	5	1.2	1.2	1.5	9.6	11.7	20
g.s. Yield (Counts)	260	220	20	10	120	100	100	40

Hyper yields are less than the original values. Improvements are now studying...

Resolution

Missing Mass resolution could be estimated with Monte-Carlo simulation. Typical mass resolution is expected to be 0.6 MeV/c² (solid targets), 1 MeV/c² (gas targets) in FWHM.

Background Estimation

Expected Yield, Rate

	³ He target	¹² C target	⁴⁰ Ca target	²⁰⁸ Pb target
Target Thickness (mg/cm2)	165	100	77.5	100
Beam Current (µA)	20	50	50	25
Beamtime (days)	25	1.5	9.6	20
Hypernuclear Yield (cts)	260	120	100	40
Mass Resolution (MeV/c ²)	1		0.6	
HES rate (kHz)	600	100	240	460
HKS rate (kHz)	100	46	30	15
Coin Trigger rate (Hz)	160	25	39	38
Peak Significance (S/√N)	7	7	4	2

Single rates in both spectrometer would be much more relax than those of E05-115 (several MHz) thanks to larger e' opening angles and background separation with PCSs.

Expected Spectrum (Solid target)

Summary table

		Hall-A	Hall-C	
Beam	Energy	4.24 GeV	2.24 GeV	
	ΔE/E	1×10-4		
e'	Spectrometer	PCS(e') + HRS	PCS(e') + HES	
	р	2.74 GeV/c	0.74 GeV/c	
	Δρ/ρ	1×10 ⁻⁴	5×10 ⁻⁴	
	ΔΩ	6 msr	4 msr	
	Rate (⁴⁰ Ca)	11 kHz	240 kHz	
K+	Spectrometer	PCS(K ⁺) + HKS 1.2 GeV/c 3×10 ⁻⁴ 8 msr		
	р			
	Δρ/ρ			
	ΔΩ			
	Rate (⁴⁰ Ca)	30 kHz		
Data	Yield (⁴⁰ Ca)	32 cts / day	10 cts / day	
	Acc. rate	1.7 Hz	39 Hz	
	S/N	23	0.37	
	Mass Resolution	0.8 MeV/c ²	0.6 MeV/c ²	

Summary

Setup plan of original proposal and Hall-C exp.
HRS → vertical bending HES is really challenging.

Modifications

Simulation update, vertical bending HES support, connection of HES and PCS, Power supply, and Target design.

Update of Yield, Resolution, Background estimation

Yield will be 1/3.

Resolution will be 20 % better.

Background will be 10 times more than original proposal, 10 times less than E05-115.