分子動力学法を使った計算から解明する ハイパー核の面白い側面って?

井坂 政裕(法政大)

Grand challenges of hypernuclear physics

Interaction: "baryon-baryon interaction"

- 2 body interaction between baryons (Y: hyperon, N: nucleon)
 - hyperon-nucleon (YN)
 - hyperon-hyperon (YY)
- Major issues in hypernuclear physics

Structure: "many-body system of nucleons and hyperon"

- Addition of hyperon as an impurity in (hyper)nuclei
 - No Pauli exclusion between N and Y
 - YN interaction is different from NN

→ "Impurity effects"

Today: ハイパー核構造。ハが核に加わると、何が起こるか?

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- ullet Concentrated in light Λ hypernuclei
- Most have well-developed cluster structure

Cluster structure in light hypernuclei

Famous example of "impurity effect"

- Λ reduces inter-cluster distance b/w α + *d* of the core nucleus ⁶Li
- Confirmed through B(E2) reduction
- A粒子によって、どのようなimpurity effectが起こるのか?
- 他の核でも同様のshrinkageが起こるのか?別の変化が起こるのか?

Toward heavier and exotic Λ hypernuclei

◆Experiments at J-PARC, JLab, *etc*.

- Heavier(sd-shell and more) hypernuclei can be produced
- Various structures will appear

Exotic structure of neutron-rich nuclei

◆Example : Parity inversion of the ¹¹Be g.s. → 魔法数N=8の消失

Y. Kanada-En'yo and H. Horiuchi, PRC **66** (2002), 024305.

∧粒子が加わると何が起こる?

- 各状態の構造をどれほど変えるのか?
- ・エネルギー準位(励起スペクトル)の変化は?

Structure of *sd*-shell nuclei

◆sd-shell核の構造の特徴

●平均場構造とクラスター構造が低励起状態に共存

●様々な変形:プロレート、オブレート、三軸非対称、超変形、etc.

Structure of *sd*-shell nuclei

Coexistence of mean-field like & cluster structures

Example: ²⁰Ne

- (Deformed) shell-model like ullet
- α + ¹⁶O cluster

- 構造が異なる状態では、impurity effectsに違いはあるか?
- shrinkageは起こるのか?

Various deformation of nuclei

Most of nuclei are deformed except for magic nuclei

60°

β

 $\beta = 0$

Spherical

 γ

Nuclear quadruple deformation (β,γ)

 $\gamma = 60^{\circ}$

()

- β : degree of quadrupole deformation
- γ: (tri)axiality

Oblate deformation short axis symmetry

Prolate deformation

long axis symmetry

Short

Various deformation of nuclei

Most of nuclei are deformed except for magic nuclei

60°

ß

 \mathbf{N}

 $\sqrt{\gamma} \approx 30^{\circ}$

N°

 $\gamma = 0^{\circ}$

Nuclear quadruple deformation (β,γ)

 $\gamma = 60^{\circ}$

()

 $\beta = 0$

- β : degree of quadrupole deformation
- γ: (tri)axiality

Oblate deformation short axis symmetry

Spherical 変形の変化は? ^粒子を加えたときの変形による違いは?

Triaxial deformation no symmetry axis

Prolate deformation long axis symmetry

HyperAMD: Antisymmetrized Molecular Dynamics for hypernuclei

Hamiltonian

$$\hat{H} = \hat{T}_N + \hat{V}_{NN} + \hat{T}_\Lambda + \hat{V}_{\Lambda N} - \hat{T}_g$$

NN : Gogny D1S Λ N : YNG interaction

Wave function

• Nucleon part: Slater determinant Spatial part of s.-p. w.f. is described as Gaussian packets

• Single-particle w.f. of Λ hyperon: Superposition of Gaussian packets

• Total w.f.:
$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\varphi_{N}(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\varphi_{i}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} V_{\sigma}(r-Z_{i})_{\sigma}^{2}\right] \chi_{i}\eta_{i}$$

$$\chi_{i} = \alpha_{i}\chi_{\uparrow} + \beta_{i}\chi_{\downarrow}$$

$$\varphi_{\Lambda}(r) = \sum c_{m}\varphi_{m}(r)$$

$$\varphi_m(r) = \sum_m c_m \varphi_m(r)$$

$$\varphi_m(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_\sigma (r - z_m)_\sigma^2\right] \chi_m$$

$$\chi_m = a_m \chi_\uparrow + b_m \chi_\downarrow$$

Theoretical framework: HyperAMD

Procedure of the calculation

Theoretical framework: HyperAMD

Procedure of the calculation

• Energy variation with constraint on nuclear quadrupole deformation

Theoretical framework: HyperAMD

Procedure of the calculation

• Energy variation with constraint on nuclear quadrupole deformation

Quadrupole deformation (β , γ)

- Energy variation is performed at each (β , γ)
- p states are obtained by constraint on Λ single particle wf: $V_f = \lambda \sum_f |\varphi_f\rangle \langle \varphi_f |$

Theoretical Framework: HyperAMD

Procedure of the numerical calculation

Theoretical Framework: HyperAMD

◆AMD(HyperAMD)の利点

- ●クラスター構造も平均場構造も記述できる
- ●核構造の動的変化を記述可能
- ●変形の軸対称性を仮定しない
- ●偶偶核・奇奇核・偶奇核いずれも可

◆適用範囲

- ●質量数が大きすぎると適用できない(A=59までは適用例あり)
- ●模型計算:bareな核力ではなく、有効核力(バリオン間力)が必要

Recent development based on AMD

To describe short-range & tensor correlations with bare nuclear force

• TOAMD: adding correlation functions multiplying AMD wf

T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, PTEP2015,073D02

• HMAMD: high-momentum components is included in AMD wf

T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, M. Lyu, M. Isaka, T. Yamada, PTEP**2017**, 111D01 (2017)

Example: applications of HMAMD to ³H

ハイパー核の構造として期待できること

- ●glue-like role: A粒子により、非束縛状態が束縛する
- ●構造の動的変化:変形の変化、核半径の収縮
- ●変形・構造の違いに対するエネルギー(B_A)の違い
- ●∧粒子が変形状態に結合することで現れる新奇な状態

ハイパー核の構造として期待できること

- ●glue-like role: A粒子により、非束縛状態が束縛する
- ●構造の動的変化:変形の変化、核半径の収縮
- ●変形・構造の違いに対するエネルギー(B_Λ)の違い
- ●∧粒子が変形状態に結合することで現れる新奇な状態

Many authors predict that Λ in s-orbit reduces nuclear deformation

Antisymmetrized molecular

Relativistic mean-field (RMF)

Skyrme-Hartree-Fock (SHF)

RMF & SHF

³₄C (+11.0 MeV)

-0.2 -0.1 0 0.1 0.2 0.3 0.4

 $\beta = \sqrt{5\pi/3} O / 7B^2$

Deformations/level structure with beyond-mean-field

J.W. Cui, X.R. Zhou, H.J. Schulze, PRC**91**,054306('15)

H. Mei, K. Hagino, J.M. Yao, T. Motoba, PRC**91**, 064305(2015); **97**, 064318(2018)

... and so on

H. J. Schulze, et al., PTP**123**, 569('10)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

Deformation change by Λ in *s*-orbit

How to analyze from energy surface

M.I, et al., PRC83, 044323(2011)

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation of hypernucleus
 - \rightarrow energy minimum moves to smaller β with Λ in *s*-orbit

Λ in *p*-orbit enhances nuclear deformation

Deformed Skyrme-

Triaxially deformed

Antisymmetrized molecular dynamics (AMD)

relativistic mean-field Hartree-Fock (DSHF) W. X. Xue, et al., PRC**91**, 024327(2015) M.I, et al., PRC83, 044323(2011) Bi-Cheng Fang et al., EPJA**56**,11(2020) -86 ⁵¹₂V (+20.8 MeV) ⁵¹V (+14.6 MeV) ^{©⊗∧}1(+11.51MeV -431 E [MeV] ⁵¹_{Ad}V (+ 6.6 MeV) -78^2(+1.65MeV adding Λ in *p* orbit E (MeV) +2.2 MeV (β=0) -432 $^{13}_{\Lambda}\mathrm{C}$ -80 E (MeV) -100 <u>–</u> 0.0 -433 +0.8 MeV -820.2 0.4 ß -434 -0.4 -0.2 0.0 0.2 0.4 –0.1 Me -435 β_2 0.2 0.4 -0.2 0.0

Deformation change of Λ in higher orbits such as *d*-orbit is also predicted by several papers: W. X. Xue, et al., PRC**91**, 024327(2015), X. Y. Wu, et al., PRC**95**, 034309(2017)

Why does Λ change nuclear deformation?

- Λ in *s* orbit is deeply bound at small β , while Λ in *p* orbit prefers deformation
- Competition b/w Λ binding energy and energy surface of core nucleus

"binding energy of Λ " vs. "energy surface of the core nuclei"

Energy surface of core nuclei

"Overlap between A and N" is the key!

 Λ in *s*-orbit (*p*-orbit) is deeply bound with smaller β (larger β) due to larger overlap between Λ and nucleons

Λ in <i>s</i> orbit	\bigcirc	\bigcirc		
	Small β	Large β		
Overlap b/w Λ & N	Large	Small		
$\Lambda \mathrm{N}$ attraction	Large	Small		
Λ in ${\it p}$ orbit				
	Small β	Large β		
Overlap b/w Λ & N	Small	Large		
$\Lambda \mathrm{N}$ attraction	Small	Large		

\bullet Deformation changes on (β , γ) plane: triaxiality

Changes of triaxially by Λ is also discussed by several authors

Structure dependence of "impurity effects"

• Example: ${}^{21}_{\Lambda}$ Ne

M. Isaka, et al., PRC83, 054304(2011)

• Shrinkage/deformation change are larger in α + ¹⁶O + Λ cluster states, which appears as difference in intra-band B(E2) reduction

Ground band				K^{π} = 0^{-} ($lpha$ + ¹⁶ O) band				cf. ⁷ Li		
	fm PNe 0 ⁺								$1 \approx \Lambda$	⁶ Li
20	^D Ne	21 _Λ	Ne		20	Ne	²¹ /	Ne		α
<u>K^π=0⁺</u>	r _{RMS} (tm)	0 [™] ```	r _{RMS} (tm) /	∆r _{RMS} (fm)	<u>Κ^π=0</u>	r _{RMS} (fm)	0 ⁻ ⊗∧s	r _{RMS} (fm)	$\Delta r_{RMS}(fm)$	shrinkage 🗖
0+	2.97	(1/2)+	2.92	-0.05	1-	3.27	(1/2)-	3.15	-0.11	
2+	2.96	(3/2)+	2.91	-0.05			(3/2)-	3.15	-0.11	•
		(5/2)+	2.91	-0.05	3–	3.24	$(5/2)^{-}$	3.13	-0.11	7 Li
4+	0.00	(7/2)+ 2.87 -0.06			$(1/2)^{-}$	3.14	-0.10			
	2.93	(9/2)+	2.88	-0.04	5–	3.23	(11/2)-	3.11	-0.13	
6+	2.87	(11/2)+ (13/2)+	2.81 2.83	-0.05 -0.04	7–	3.23	(13/2)- (15/2)-	3.06 3.05	-0.17 -0.18	

ハイパー核の構造として期待できること

- ●glue-like role: A粒子により、非束縛状態が束縛する
- ●構造の動的変化:変形の変化、核半径の収縮
- ●変形・構造の違いに対するエネルギー(B_∧)の違い
- ●∧粒子が変形状態に結合することで現れる新奇な状態

Difference of B_{Λ} depending on deformation

-75

-78

Difference of B_{Λ} depending on deformation

- Different structures coexist near the ground state
- M. Isaka, et al., PRC**83**, 054304(2011)
- Λ in s orbit changes them, but the difference remains
- Λ is localized around ¹⁶O in α + ¹⁶O + Λ state \rightarrow difference of B_{Λ}

ハイパー核の構造として期待できること

- ●glue-like role: A粒子により、非束縛状態が束縛する
- ●構造の動的変化:変形の変化、核半径の収縮
- ●変形・構造の違いに対するエネルギー(B_A)の違い
- ∧粒子が変形状態に結合することで現れる新奇な状態

H. Mei, K. Hagino, J. M. Yao, T. Motoba, Phys. Rev. C96, 014308(2017)

- Nuclear deformation affects excitation energy and energy spacing of p states
- Sm isotopes: vibrational (spherical) to rotational (deformation) character

Splitting of p orbit with triaxial deformation → 3 different p states

- 3 *p*-states with different spatial distributions of Λ
- Λ binding energy $b_{\Lambda}(\beta)$ is different each other due to triaxial deformation

0.4

0.6

• Possibility of ${}^{27}{}_{\Lambda}$ Mg in future JLab experiments

生成断面積:非束縛状態の構造を引き出したい

Production cross section of hypernuclei with AMD wave functions to see effects of various structures

• In future: (γ, K⁺) reaction

T. Motoba et al., PTP185, 224(2010)

$$\frac{d\sigma}{d\Omega} \left(\theta_{K}^{\text{Lab}} \right) = \frac{sp_{K}^{2} E_{K} E_{H}}{p_{K} \left(E_{H} + E_{K} \right) - E_{\gamma} E_{K} \cos \theta_{K}^{\text{Lab}}} \sum_{M_{f}} R(fi; M_{f}),$$

$$R(fi; M_{f}) = \frac{1}{2J_{i} + 1} \sum_{M_{i}} \Psi_{\text{GCM}}^{J_{f} \pi M_{f}} |\langle \Psi_{\text{GCM}}^{J_{f} \pi M_{f}} | O | \Psi_{\text{GCM}}^{J_{i} \pi M_{i}} \rangle|^{2}$$

$$A \text{MD} + \text{GCM wave functions}$$

$$Various \ structure$$

$$P(\mathbf{e}, \mathbf{e}' \mathbf{K}^{+}) \wedge$$

$$O = \int d^{3} r \chi_{K}^{(-)*}(\mathbf{p}, \xi \mathbf{r}) \chi_{K}^{(+)}(\mathbf{k}, \mathbf{r}) \sum_{j=1}^{A} V_{-}^{(j)} \delta \left(\mathbf{r} - \eta \mathbf{r}_{j} \right) \langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle$$

$$Elementary \ amplitude$$

$$\rightarrow \text{Distorted wave}$$

Current status: PWIA based on effective nucleon number approach

生成断面積:非束縛状態の構造を引き出したい

Example: ¹²C(g, K⁺)¹² B

生成断面積:非束縛状態の構造を引き出したい

◆Example: ¹²C(g, K⁺)¹²_ΛB

Summary

◆ Λ 粒子が原子核に加わると、何が起こるか?

- glue-like role: ∧粒子により、非束縛状態が束縛する
- ●構造の動的変化:変形の変化、核半径の収縮
 - "binding energy of Λ " vs. "energy curve of the core nuclei"
 - Large shrinkage in cluster states
- ●変形・構造の違いに対するエネルギー(B_Λ)の違い
 - Shift-up/down in excitation spectra, if different structure coexist
 例)^A_ABe: 2αクラスター構造の違い、²¹_ANe: 平均場とクラスター

●∧粒子が変形状態に結合することで現れる新奇な状態

Deformation can affect excitation spectra/rotational bands of *p*-states
 例)²⁷ Mg: Aをプローブとして核の三軸非対称変形をidentifyできるか