Oh The Humanity! What Have You Done To The MLU!?

MLU Functions in the Tritium Cycle

Evan McClellan

February 8, 2018

Fast Clock Counter

- Count LHRS clocks since start of run
- Read-out every physics event
- LHRS clock frequency $=103 \mathrm{kHz}$
- Two-Arm event syncing, inter-event duration, etc.

Register Size

nbits	Period
16	0.64 s
32	11.6 hr
48	86.7 yr
64	5.68 Myr

Clock Counter Data (RHRS)

Event Interval

Clock Counter Data (LHRS)

Clock Counter Data (LHRS): Beam vs Cosmics

A Random Pulser in Programmable Logic
 Linear Feedback Shift Registers, Inverse Transform Sampling, and Rational Function Fitting, Oh My!

Evan McClellan

February 8, 2018

Why make a Fast Random Trigger?

Accurate deadtime vs rate mapping without beam (less accurate if read-out is zero-suppressed)

What is a Linear-Feedback Shift Register?

Pseudo-random number generator.
Easy to implement in hardware (programmable logic)
Used for security in GSM phones.

LFSR 3-bit Demo

R = '001' =

LFSR 3-bit Demo

R = '001' =

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 \prime^{\prime}=1 \\
& R=2010 '=2
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 \prime^{\prime}=1 \\
& R=2010 '=2
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R=' 010 '=2 \\
& R=' 1011^{\prime}=5
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R=' 010 '=2 \\
& R=' 1011^{\prime}=5
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R='^{\prime} 010^{\prime}=2 \\
& R={ }^{\prime} 101 '=5 \\
& R='^{\prime} 011^{\prime}=3
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R='^{\prime} 010^{\prime}=2 \\
& R={ }^{\prime} 101 '=5 \\
& R='^{\prime} 011^{\prime}=3
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R=' 010^{\prime}=2 \\
& R=' 101 '=5 \\
& R='^{\prime} 011^{\prime}=3 \\
& R='^{\prime} 111^{\prime}=7
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R=' 010^{\prime}=2 \\
& R=' 101 '=5 \\
& R='^{\prime} 011^{\prime}=3 \\
& R='^{\prime} 111^{\prime}=7
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R='^{\prime} 010^{\prime}=2 \\
& R='^{\prime} 101 '=5 \\
& R='^{\prime} 011^{\prime}=3 \\
& R={ }^{\prime} 111^{\prime}=7 \\
& R={ }^{\prime} 110^{\prime}=6
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R='^{\prime} 010 '=2 \\
& R='^{\prime} 101 '=5 \\
& R='^{\prime} 011^{\prime}=3 \\
& R={ }^{\prime} 111^{\prime}=7 \\
& R={ }^{\prime} 110^{\prime}=6
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& R=' 001 '=1 \\
& R=' 010 '=2 \\
& R=' 101 '=5 \\
& R='^{\prime} 011^{\prime}=3 \\
& R={ }^{\prime} 111^{\prime}=7 \\
& R={ }^{\prime} 110^{\prime}=6 \\
& R={ }^{\prime} 100 '=4
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& \mathrm{R}=\text { '001' = } 1 \\
& \mathrm{R}=\mathrm{C} 010 \text { ' }=2 \\
& R=\text { '101' }=5 \\
& R=\text { '011' }=3 \\
& \mathrm{R}=\mathrm{'}^{\prime} 111 \text { ' }=7 \\
& R=' 110 '=6 \\
& R=' 100 '=4
\end{aligned}
$$

LFSR 3-bit Demo

$$
\begin{aligned}
& \mathrm{R}={ }^{\prime} 0011^{\prime}=1 \\
& \mathrm{R}={ }^{\prime} 010^{\prime}=2 \\
& \mathrm{R}={ }^{\prime} 101^{\prime}=5 \\
& \mathrm{R}={ }^{\prime} 011^{\prime}=3 \\
& \mathrm{R}={ }^{\prime} 111^{\prime}=7 \\
& \mathrm{R}={ }^{\prime} 110^{\prime}=6 \\
& \mathrm{R}={ }^{\prime} 100^{\prime}=4 \\
& \mathrm{R}={ }^{\prime} 001^{\prime}=1
\end{aligned}
$$

13 bits and 18 bits

18-bit LFSR, lowest 13 bits used as pRNG output range $[0,8191]$, cycle repeats every 262143 cycles ($=6.6$ milliseconds)

From Uniform pRNG to Stochastic Interval (Overkill)

What do intervals of stochastic events look like?

Exponential Distribution (continuous)

$$
f_{p d f}(x)=\lambda e^{-\lambda x}
$$

Geometric Distribution (discrete)

$$
g_{p d f}(k)=(1-p)^{k} p
$$

- p : Probability of success

- k : number of failed trials

From Uniform pRNG to Stochastic Interval (Overkill)
Inverse Transform Sampling

$$
\begin{aligned}
f_{c d f}(x) & =\int_{-\inf }^{x} f_{p d f}(t) d t \\
y & =f_{c d f}(x) \\
x & =f_{c d f}^{-1}(y)
\end{aligned}
$$

From Uniform pRNG to Stochastic Interval (Overkill)

Exponents are Hard; Rational Functions are Easy!

$$
\begin{gathered}
g_{p d f}(k)=(1-p)^{k} p \\
g_{c d f}(k)=1-(1-p)^{k+1} \\
p_{1}(k)=\frac{a+b k}{1+d k} \\
p_{2}(k)=\frac{a+b k}{8192+2 k}
\end{gathered}
$$

From Uniform pRNG to Stochastic Interval (Overkill)

Exponents are Hard; Rational Functions are Easy!

$$
\begin{gathered}
g_{p d f}(k)=(1-p)^{k} p \\
g_{c d f}(k)=1-(1-p)^{k+1}
\end{gathered}
$$

$$
\begin{aligned}
p_{1}(k) & =\frac{a+b k}{1+d k} \\
p_{2}(k) & =\frac{a+b k}{8192+2 k}
\end{aligned}
$$

From Uniform pRNG to Stochastic Interval (Overkill)

Putting It All Together

(In principle, this techique could generate any output distribution.)

Real-Time Stochastic Trigger Generation

The End

Thanks!

