6th October 2022

Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics 2022

High precision spectroscopy of Lambda hypernuclei at the HIHR beamline of the J-PARC Hadron Hall Extension Project

Satoshi N. Nakamura

The University of Tokyo

Strategy to solve the hyperon puzzle

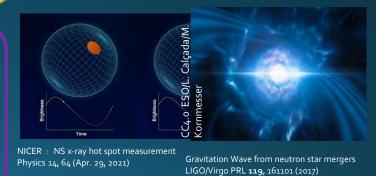
Reliable high precision data

Light ∧ hypernuclei

Medium to heavy hypernyclei

Hyperon Nucleon Scattering Experiments

Cluster Calc. Faddeev NCSM Shell Model
Quantum MC
Hyper AMD
Rel. MF ...


ChEFT L-QCD Meson exchange models

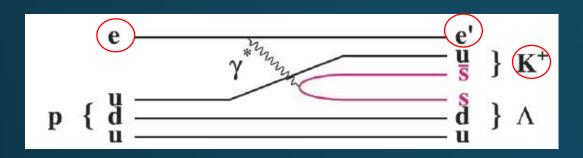
Femtoscopy

Microscopic

Realistic 2-body BB interaction

In-medium BB interaction (Density dependence, 3BF)

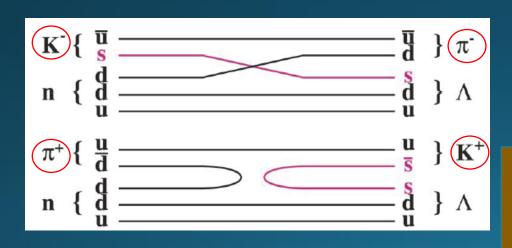
Touchstone


Macroscopic

EoS of NS

Astronomical observations GW, X-ray telescope info.

Electron beam vs. meson beams


(e,e'K+) @ JLab Excellent mass resolution ~ 0.5 MeV(FWHM)

Absolute energy calibration $p(e,e'K^+) \Lambda, \Sigma^0$

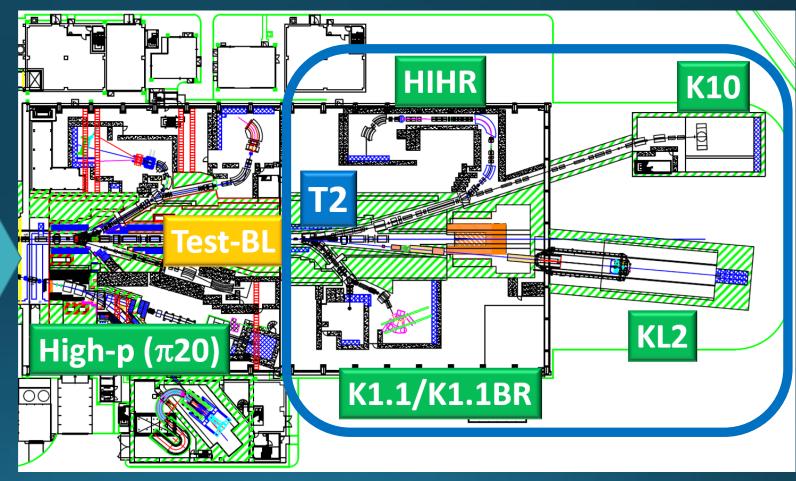
High Intensity $100 \,\mu\text{A} = 6 \times 10^{14} \,\text{/s}$

Thin target (isotopically enriched) eg. 40,48Ca, 3H

Intensity limitation (K-, π -) < a few \times 10^6 /s 1-2 MeV resolution Normalized to $^{12}_\Lambda$ C mass (π^+, K^+)

HIHR@J-PARC HD. Ex
Excellent mass resolution
< 0.4 MeV
Thin target (isotopically enriched)
No limitation for beam intensity


High Intensity High Resolution beamline



Hadron Experimental Facility Extension (HEF-Ex) Project a J-PARC

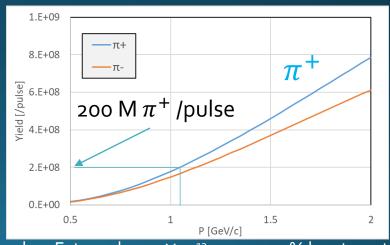
150 Oku-Yen Project(2.5 billion CZK)

Present facility

1 new production target (T2) + 4 new beamlines (HIHR, K1.1/K1.1BR, KL2, K10) + 2 modified beamlines (High-p (π20), Test-BL)

HIHR

- High-Intensity High-Resolution Beamline for High Precision (π, K+) Spectroscopy
 - Momentum dispersion matching no beam tracking = **NO limit for** π **rate** from detectors

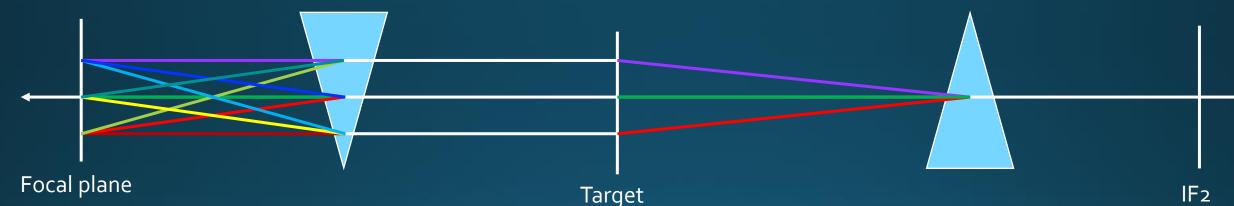

Experimental target (dispersive focus) K Spectrometer (QQDMD) **Achromatic focus** Separator (ESS X. K10 Mass Slit (V) π production target

Exist beamlines: $\sim 10^6$ pions/pulse, $\Delta p/p \sim 1/1000$

200 x 10⁶ pions/pulse, $\Delta p/p \sim 1/10000$

HR beamline $(P_{max} = 2 \text{ GeV/}c)$ + High Res. Kaon sectrometer

3deg. Ext. angle, 5.0×10¹³ ppp on 50% loss target (T2) 46kW, 5.2s (92kW on T1) 1.4msr%, (From T. Takahashi)


Momentum Dispersion Match

Scattered spectrometer

Reaction

Beam line

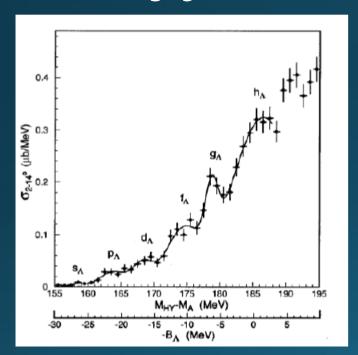
$$\begin{pmatrix} x_f \\ \theta_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{16} \\ s_{21} & s_{22} & s_{26} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} T & 0 & 0 \\ 0 & \theta/\theta_1 + 1 & 0 \\ 0 & 0 & (K\theta + DQ)/\theta_0 + C \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{16} \\ b_{21} & b_{22} & b_{26} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ \theta_0 \\ \delta_0 \end{pmatrix}$$

Momentum matching condition

```
x_f = (s_{11}b_{11}T + s_{12}b_{26})x_0 ------ total magnification \rightarrow minimize +(s_{11}b_{12}T + s_{12}b_{22})\theta_0 ------ point-to-point focus \rightarrow o +(s_{11}b_{16}T + s_{12}b_{26} + s_{16}C)\delta_0 ---- momentum matching \rightarrow o +(s_{1s} + s_{16}K)\theta ------ kinematical correction \rightarrow o +s_{16}DQ ------ a position shift by the excitation energy
```

$$\theta_{1} = b_{21}x_{0} + b_{22}\theta_{0} + b_{26}\delta_{0},$$

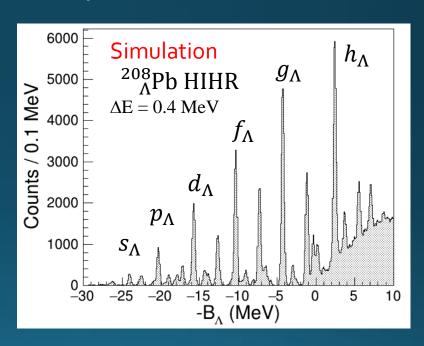
$$K = (\partial p_{scat}/\partial \theta)(1/p_{scat}),$$


$$C = (\partial p_{scat}/\partial p_{beam})(p_{beam}/p_{scat}),$$

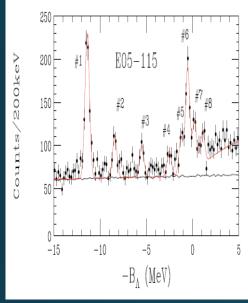
$$D = (\partial p_{scat}/\partial Q)(1/p_{scat}).$$

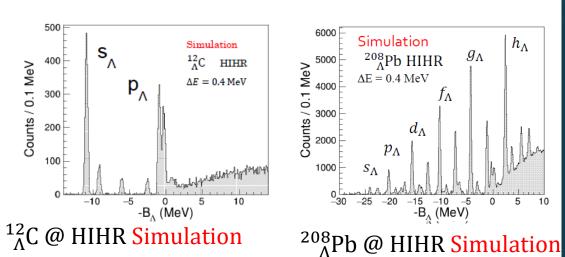
High precision (π^+, K^+) spectroscopy

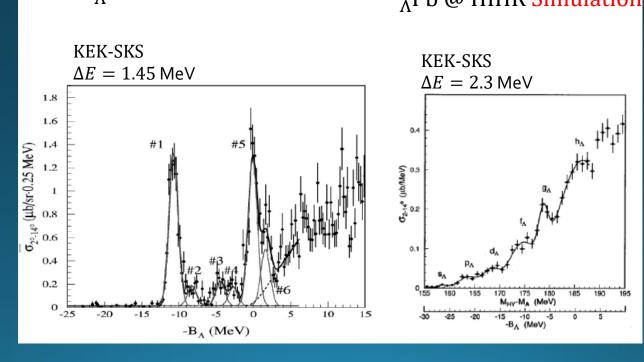
¹²C, ^{6,7}Li, ⁹Be, ^{10,11}B, ²⁸Si, ⁴⁰Ca, ⁵¹V, ⁸⁹Y, ¹³⁹La, ²⁰⁸Pb


KEK-PS E₃69 with SKS

60 days \times 3M π /spill @ KEK K6 Δ E~2.3 MeV(FWHM)

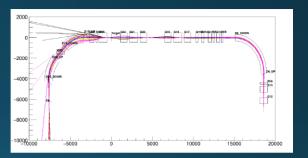

Expected at HIHR beamline

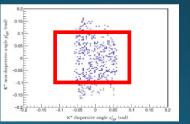

60 days × 200M π/spill @ HIHR $\Delta E \sim 0.4$ MeV(FWHM)

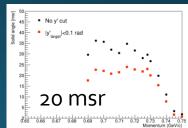

Based on Motoba-san's old paper.

Expected spectra

¹²_ΛB @ JLab E05 – 115






Expected Yield of Hypernulclei

	HIHR@J-PARC Ex. 1.1GeV/c π ⁺
Reaction	$^{12}\mathrm{C}(\pi^+,K^+)^{12}_{\Lambda}\mathrm{C}$
Beam on target (/ sec)	$3.85 imes 10^7~\pi^+$ (200 M/spill, 50kW)
Target Thick (mg/cm²)	400 (1.8 g/cm³ x 0.22 cm)
Solid Angle for K+ (msr)	>20
Kaon Survival Ratio	0.12 (11.4 m for QSQDMD)
Cross section (μb/sr)	8.1
Expected Yield (/h)	53.1

GEANT4 simulation

Proposal of 1st Campaign, J-PARC P84

Table 6·I: Summary of requesting beamtime for 50 kW proton beam power. Differential cross sections at $\theta_K \sim 0$ were estimated by using data of prior (π^+, K^+) experiments [PIL91, HAS94, HAS96, HOT01, HAS06]

	Assumed g.s. Cross Section (µb/sr)	Target thickness (mg/cm²)	Expected Yield(/h)	Requested number of events for g.s.	Beam Time (h)
¹² ΛC	8.1	100	13.3	1000	79
¹² ΛC	8.1	200	26.6	2000	79
¹² ΛC	8.1	400	53.1	2000	39
⁶ _Λ Li	1.9	200	12.7	100	8
⁷ _Λ Li	1.9	200	10.9	100	10
⁹ _Λ Be	0.2	200	1.1	100	98
¹⁰ _Λ B	0.9	200	3.5	100	30
11 _Λ B	0.9	200	3.2	100	33
²⁸ ΛSi	0.5	400	1.4	100	75
⁴⁰ _Λ Ca	0.5	400	0.94	100	112
51 _Λ V	1.2	400	1.8	100	59
89 Λ	0.6	400	0.53	100	199
Sub total (light- mid heavy)					724 (30 days)

GOAL: Peak determination precision 40 keV

 $(\sigma \sim 17 \text{ keV})$

¹³⁹ ∆La	0.3	200	0.085	20	236
¹³⁹ ∆La	0.3	400	0.17	80	471
²⁰⁸ _Λ Pb	0.3	200	0.057	20	352
²⁰⁸ ΛPb	0.3	400	0.11	80	705
Sub total (heavy)					1764 (73 days)
Grand Total					2488 (104 days)

73 days for heavier targets

104 days for total

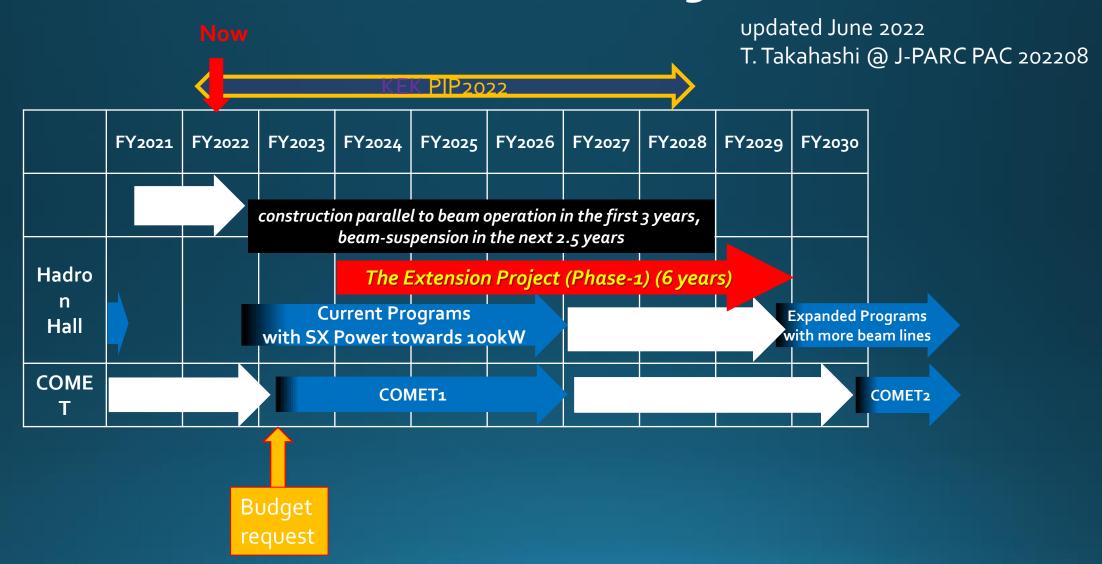
30 days for lighter targets

KEK Project Implementation Plan (PIP) 2022, June 24

HEF-ex project was selected as No.1 (out of 4) project to make new budget requests in the next KEK mid-term period (2022-2028).

J-PARC International Advisory Committee 2022

IAC Report


http://j-parc.jp/c/uploads/2022/JPARC-IAC2022-report.pdf#zoom=100

SUMMARY OF THE RECOMMENDATIONS BY SECTIONS IN THE REPORT

Particle and Nuclear Physics

- The IAC recommends construction of the hadron hall extension as soon as possible. This
 will enrich the scientific program considerably by addressing timely questions in nuclear
 and particle physics.
- J-PARC should dedicate additional efforts to increase and optimize use of beam time for the current and planned experiments.
 - The hadron hall extension will not only provide more space for the planned instrumentation, like the high-resolution spectrometer, but at the same time enable a more efficient operation of the experimental program in terms of efficiency of data taking, as well as mounting and dismounting of instrumentation. The recent workshops on the hadron hall extension were successful and demonstrate strong support from the community for the hadron hall extension and its science program.

Timeline of the Project

Summary

Recent progresses of astrophysical observations of NS

Microscopic understanding becomes more important

High precision spectroscopy of hypernuclei

Challenge to Hyperon Puzzle

(e,e'K) at JLab

New programs: Hypertriton puzzle and CSB study (${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H), Triaxial deformation (${}^{27}_{\Lambda}$ Mg) Isospin dependence (${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K), Heaviest hypernuclei (${}^{208}_{\Lambda}$ Tl)

HIHR at J-PARC HD-Ex.

Spectroscopy of Λ hypernuclei with (π^+, K^+) reaction at HIHR (P84) Precise Spectroscopy of Λ hypernuclei in all mass range

Realize Hypernuclear Factory!