Effects from Baryon-Baryon Interaction in Electroproduction of Hypernuclei

Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences

gemma.ujf.cas.cz/~p.vesely/

Collaborators: P. Bydžovský, G. De Gregorio, D. Denisova, F. Knapp, N. Lo Iudice, D. Petrellis, D. Skoupil.

Baryon Interaction Study from Hypernuclear Reaction and Structure via Electroproduction Method 2023 (BISHOP 2023),

Řež, Czech Republic, 17th May 2023

Motivation

Work on development of **many-body method**(s) suitable for description of **nuclear and hypernuclear structure** which aim to describe wide range of hypernuclei including medium-size & heavy systems.

Two methods – Nucleon-Lambda Tamm Dancoff Approximation (TD_A) and Nucleon-Lambda Equation of Motion Phonon Method (EMPM_A) – can be used in calculations of hypernuclear production – especially in the hypernuclei whose production is planned by experimentalists in close future (${}^{40}_{A}$ K, ${}^{48}_{A}$ K, ${}^{208}_{A}$ TI).

Outline:

- Electroproduction of Hypernuclei.
- Applications of **TD**, and **EMPM**, in the Calculations of **Hypernuclei**.
- **Results** cross sections of the production of ${}^{12}_{\Lambda}B$, ${}^{16}_{\Lambda}N$, ${}^{28}_{\Lambda}AI$, ${}^{40,48}_{\Lambda}K$.
- **Summary** and Possible Extensions.

Electroproduction of Hypernuclei

Hypernuclear production:

- Elementary process of electroproduction: $p(e,e' K^{+}) \Lambda$
- Kinematics of the reaction
- Information about (many-body) nuclear & hypernuclear structure
- Information about the AN(N) interactions

All "ingredients" important for description of hypernuclear production.

 $\gamma_{\rm V}(P_{\rm Y}) + {\rm A}(P_{\rm A}) \longrightarrow {\rm H}(P_{\rm H}) + {\rm K}^+(P_{\rm K})$

 $\frac{d^{3}\sigma}{dE_{e}^{e}d\Omega_{e}^{e}d\Omega_{\kappa}} = \Gamma\left[\frac{d\sigma_{U}}{d\Omega_{\kappa}} + \varepsilon \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \sqrt{\varepsilon_{L}(\varepsilon+1)} \frac{d\sigma_{I}}{d\Omega_{\kappa}}\right] \text{ (one-photon exchange approx.)}$ $\frac{d\sigma_{U}}{d\Omega_{\kappa}} = \frac{\beta}{2(2I_{A}+1)} \sum_{m} \frac{1}{2j+1} (|A_{jm}^{*1}|^{2} + |A_{jm}^{*2}|^{2}), \qquad \text{Transition amplitude} \qquad T_{\lambda}^{(1)} = \frac{Z}{[J_{H}]} \sum_{S_{\eta}} \mathcal{F}_{\lambda\eta}^{S} \sum_{LM} \sum_{J_{m}} \mathcal{C}_{LMS\eta}^{Im} \mathcal{C}_{J_{M}M_{A}Jm}^{Im} (J_{H}||F_{LM}[Y_{L} \otimes \sigma^{S}]^{J}||J_{A})$ $\frac{d\sigma_{U}}{d\Omega_{\kappa}} = -\frac{\beta}{2J_{A}+1} \sum_{m} \frac{1}{2j+1} |A_{jm}^{*m}|^{2}, \qquad \text{Operator can be expressed in the second quantized form.}$ $\frac{d\sigma_{U}}{d\Omega_{\kappa}} = \frac{\beta}{2J_{A}+1} \sum_{m} \frac{1}{2j+1} \operatorname{Re}(A_{jm}^{*m}[A_{jm}^{*m} - A_{jm}^{*m}]) \qquad \text{Operator can be expressed in the second quantized form.}$ $We \text{ evaluate} \qquad (\Phi_{H} ||[b_{\sigma'}^{+} \otimes a_{\alpha}]^{J}||\Phi_{A}) \qquad \text{nucleus}$ annihilation p $P. Bydžovský \text{ et al., Phys. Rev. C 106, \\ 044609 (2022). \qquad \text{creation } \Lambda$

Electroproduction of Hypernuclei

Hypernuclear production:

$$\frac{d^{3}\sigma}{dE_{\epsilon}'d\Omega_{\epsilon}'d\Omega_{\kappa}} = \Gamma \left[-\frac{d\sigma_{U}}{d\Omega_{\kappa}} + \varepsilon \frac{d\sigma_{P}}{d\Omega_{\kappa}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \sqrt{\varepsilon_{L}(\varepsilon+1)} \frac{d\sigma_{I}}{d\Omega_{\kappa}} \right]$$

 $\mathsf{M}_{\mu} = \langle \Psi_{\mathsf{H}} | \langle \chi_{\mathsf{K}} | \sum_{i=1}^{\mathbb{Z}} \hat{J}_{\mu}(j) | \chi_{\gamma} \rangle | \Psi_{\mathsf{A}} \rangle$

Fig. from M. Sotona, S. Frullani,

Prog. Theor. Phys. Suppl. 117, 151 (1994)

 $(\Phi_H || [b^+_{\alpha'} \otimes a_{\alpha}]^J || \Phi_A)$

 $\gamma_{\rm V}(P_{\rm X}) + {\rm A}(P_{\rm A}) \longrightarrow {\rm H}(P_{\rm H}) + {\rm K}^+(P_{\rm K})$

Study of the effects of the $\Lambda N(N)$ interactions & the used manybody model...

from Ref. 7).

F. Cusanno et al., Phys. Rev. Lett. 103 (2009), 202501.

p-n-A Hartree-Fock Method

p-n- Λ HF = Hartree-Fock method in the proton-neutron- Λ formalism

 diploma thesis of J. Pokorný "Three-body Interactions in Mean-Field Model of Nuclei and Hypernuclei", Czech Technical University, (2018)
Phys. Scr. 94, 014006, (2019); Acta Phys. Pol. B Proc. Suppl. 12, 657, (2019)

We obtain: - single-particle levels of protons, neutrons and Λ

Single-particle Λ energies:

realistic chiral **NN+NNN** potential **NNLO**_{sat}

realistic chiral LO YN potential (Λ N- Λ N channel) with different regulator cut-off λ

NΛ Tamm-Dancoff

$N\Lambda TDA = Nucleon - \Lambda Tamm-Dancoff Approximation (TD_)$

 diploma thesis of J. Pokorný "Three-body Interactions in Mean-Field Model of Nuclei and Hypernuclei", Czech Technical University, (2018)
Phys. Scr. 94, 014006, (2019); Acta Phys. Pol. B Proc. Suppl. 12, 657, (2019)

Suitable for hypernuclei with Λ in even-odd nuclear cores

EMPM, for Hypernuclei

EMPM extended on single- Λ hypernuclei

hypernuclei with Λ in even-odd nuclear cores

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}$

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$$

It is more important to study such hypernuclei from the point of view of experiment (production of hypernuclei ${}^{4}_{\Lambda}H$, ${}^{16}_{\Lambda}O$, ${}^{16}_{\Lambda}N$, ${}^{40}_{\Lambda}K$, ${}^{48}_{\Lambda}K$,...) Our theoretical **formalism**: $\begin{aligned} \mathcal{H}_0 &= \{ R_{\nu}^{\dagger} | \mathrm{HF} > \} \\ \mathcal{H}_1 &= \{ R_{\nu}^{\dagger} O_{\mu_1}^{\dagger} | \mathrm{HF} > \} \\ \hline \mathcal{H}_2 &= \{ R_{\nu}^{\dagger} O_{\mu_1}^{\dagger} O_{\nu_1}^{\dagger} | \mathrm{HF} > \} \end{aligned}$

Hypernuclear Hamiltonian

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda N} - \widehat{T}_{CM}$

- realistic chiral NN+NNN potential NNLO_{sat}: Phys. Rev. C91, 051301(R), (2015)
- G-matrix effective ΛN potential derived from Nijmegen-F YN Prog. Theor. Phys. Suppl. 117, 361 (1994)
 Gaussian-like form – easy to implement, interaction is effective (ΛN force already effectively includes Λ-Σ coupling) but dependent on a parameter k₋

Prog. Theor. Phys. Suppl. **117**, 361 (1994)

$$V_{AN}(r) = \sum_{i=1}^{3} (a_i + b_i k_{\rm F} + c_i k_{\rm F}^2) \exp[-r^2/\beta_i^2]$$

Dependence of the Λ single-particle energies on $k_{_{\rm F}}$

 $\mathbf{k}_{\mathbf{F}}$ as a parameter to tune the proper effective ΛN interaction.

Results - ¹²_AB

Fit to experimental data.

Shell model calculation by John Millener - **Nucl. Phys. A** 804, 84 (2008). **TD** & **EMPM** calculated with Nijmegen-F $k_{r} = 1.1 \text{ fm}^{-1}$ (tuned to describe $(0s_{1} - 0p_{2})$ gap).

Experiment $B_{A} = 11.37 + -0.06 \text{ MeV}$

Results - ¹⁶_AN

Fit to experimental data.

Shell model calculation by John Millener - **Nucl. Phys. A** 804, 84 (2008). **TD** & **EMPM** calculated with Nijmegen-F $k_F = 1.1 \text{ fm}^{-1}$ (tuned to describe $(0s_A - 0p_A)$ gap).

 TD_{Λ} describes quite well four major peaks (all dominantly Lambdaparticle nucleon-hole configuration). $B_{\Lambda} = 12.93$ MeV

EMPM_A shifts binding down in energy. Relative position of 4 main peaks remain good. Only unnatural splitting of **ground state (0⁻)** from remaining states. (Coupling to **2p-2h** states still missing).. Also **spin-dependence** of Λ N force might be not well determined. $B_{\Lambda}(0^{-}_{1}) = 17.19 \text{ MeV}$ $B_{\Lambda}(1^{-}_{1}) = 15.36 \text{ MeV}$

 TD_{r} calculation with various k_{r} - range of possible predictions..

28

Elementary amplitude SLA, frozen proton. kinematics E_i=1.8, E_f=0.5 GeV, θ_{ka} =5.4°, θ_{ka} =5.1°, Φ_{κ} =180°.

Compared to the shell model calculation by Motoba – Prog. Theor. Phys. Suppl. 185, 224 (2010).

 d_{Λ}

20

[MeV]

 f_{Λ}

25

30

Estimate due to the Average Density **Approximation**: $k_{r} = 1.24 \text{ fm}^{-1}$.

 $\int_{\Lambda}^{\circ} Al$ 28 shell model TD_{Λ} d²o/dΩ_KdE [nb/sr/MeV] 000 000 000 - EMPM p_{Λ} (result of the coupling to the SA excitations of nuclear core). Strength around f- orbital suppressed due to too small 100 number of configurations taken into account in EMPM. 0 0 5 15 10 **Excitation Energy**

Results - ⁴⁸_AK

TD_A calculation compared to **EMPM**_A for $k_F = 1.25 \text{ fm}^{-1}$.

Effect of **coupling** to **excitations of nuclear core** – more states (**fragmentation**), decreased amplitude of peaks.

Summary

- Presented formalism of electroproduction of single- Λ hypernuclei.
- Presented formalism of **TD**_A, **EMPM**_A methods.
- Presentation of results of the cross section of the electroproduction of ${}^{12}_{\Lambda}B$, ${}^{16}_{\Lambda}N$, ${}^{28}_{\Lambda}AI$, ${}^{40,48}_{\Lambda}K$.
- We get reasonable description of p-shell hypernuclei ¹²_AB, ¹⁶_AN. In ¹²_AB two main peaks described by TD_A, smaller peaks require coupling to excitations of nuclear core (EMPM_A provides qualitative description). In ¹⁶_AN four main peaks described reasonably by TD_A. In EMPM_A four main peaks shifted by ~ 1.8 MeV from the ground state 0⁻.
- We provide predictions of electroproduction cross sections of **sd-shell** hypernuclei ²⁸ AI, ^{40,48} K. In ²⁸ AI reasonable agreement with previous calculations by shell model.
- The cross sections of **electro- & photo- production** for kinematics relevant in the experiment E12-15-008 (${}^{40,48}_{\Lambda}$ K) are quite different.
- Tasks to be potentially addressed:
 - formalism to study isospin dependence of ΛNN interaction (${}^{40}_{\Lambda}K \& {}^{48}_{\Lambda}K$)
 - further **development of EMPM**, itself (coupling to 2-phonon states)
 - study of structure E hypernuclei

Thank you for attention!!!