Update on: Energy loss corrections and variable offsets using hydrogen data

> Reynier Cruz Torres Tritium meeting (June 12th, 2018)

Energy Loss (Top View)

Energy Loss

х

Energy Loss

- – Expectation from a simple most probable Eloss calculation.
- Eloss corrected E_{beam} should be lower than arc measurement (E_{beam} is measured, then beam loses energy)
- Eloss corrected scattered electron and
 proton track momenta should be higher
 than measured by spectrometers (tracks
 lose energy, then the momenta are
 measured)

Back to hydrogen data

Total number of degrees of freedom in hydrogen elastic scattering:

- Ebeam, electron 4-momentum, proton 4-momentum: 9
 - minus 1 from energy conservation: 8
 - minus 3 from momentum conservation:5
 - minus 2 from $E^2=p^2+m^2$: 3
 - minus 1 because reaction happens on one plane: 2

Thus, given any two variables, any other quantity can be determined

Beam energy reconstructed from HRS

Before Eloss corrections

- "Taller" distributions are scaled down for comparison with "shorter" ones.
- The distributions that are more off-centered (and additionally broader) are those that depend on the proton scattering angle.
- Next step: play the game backwards, and try to reconstruct the proton angle from other variables.

Proton scattering angle

Before Eloss corrections

Before Eloss corrections

Beam energy reconstructed from HRS

Before Eloss corrections

Before Eloss corrections

