Current Work

Convolution Program

- Investigate the EMC, SRC, and the correlations between the two:
 - Developing a Simulation
 - Systematic
 - Monte Carlo
 - Momentum Dependence
 - Scatter an electron off of a moving proton
 - Change initial direction of the proton
 - Change the direction of the Scattered electron

Transformations

Inelastic scattering

I calculated F_2 using the parameterization found in a paper by L.W. Whitlow

$$F_{2}^{\text{fit}}(x, Q^{2}) = \beta F_{2}^{\text{thr}}(x)$$
$$\times \left[1 + \lambda_{1}(x) \log \left(\frac{Q^{2}}{A(x)} \right) + \lambda_{2}(x) \log^{2} \left(\frac{Q^{2}}{A(x)} \right) \right],$$

$$F_{2}^{\text{thr}}(x) = \sum_{i=1}^{5} C_{i}(1-x)^{i+2},$$

$$\lambda_{1}(x) = \sum_{i=0}^{3} C_{i+9}x^{i},$$

$$\lambda_{2}(x) = C_{6} + C_{7}x + C_{8}x^{2}, \text{ if } Q^{2} \leq A(x),$$

Hydrogen	Deuterium
1.417±0.039	0.948±0.027
-0.108 ± 0.311	-0.115 ± 0.215
1.486 ± 0.903	1.861 ± 0.624
-5.979 ± 1.106	-4.733 ± 0.762
3.524 ± 0.482	2.348 ± 0.333
-0.011 ± 0.025	-0.065 ± 0.024
-0.619 ± 0.153	-0.224 ± 0.144
1.385 ± 0.213	1.085 ± 0.193
0.270 ± 0.028	0.213 ± 0.024
-2.179 ± 0.221	-1.687 ± 0.183
4.722 ± 0.537	3.409 ± 0.439
-4.363 ± 0.405	-3.255 ± 0.333
	$\begin{array}{c} 1.417 \pm 0.039 \\ -0.108 \pm 0.311 \\ 1.486 \pm 0.903 \\ -5.979 \pm 1.106 \\ 3.524 \pm 0.482 \\ -0.011 \pm 0.025 \\ -0.619 \pm 0.153 \\ 1.385 \pm 0.213 \\ 0.270 \pm 0.028 \\ -2.179 \pm 0.221 \\ 4.722 \pm 0.537 \\ -4.363 \pm 0.405 \end{array}$

Proton momentum = 0.25 GeV $F_2 \vee X_B$

Green \rightarrow Lab Frame Black \rightarrow Rest frame

F 2vXbb 0.4 98623 Entries Mean x 0.4519 0.35 Mean y 0.1802 RMS x 0.3275 RMS y 0.122 0.3 0.25 F_2 0.2 0.15 0.1 0.05 0^L 0.8 0.2 0.4 0.6 1.2 1 1.4 X_B

2D histo with F2 v Xb

Proton momentum = 0.0 GeV $F_2 \vee X_B$

Proton momentum = 0.5 GeV $F_2 \vee X_B$

Green \rightarrow Lab Frame Black \rightarrow Rest frame

2D histo with F2 v Xb

• Cross section from a paper from Petratos.

$$\sigma \equiv \frac{d^2 \sigma}{d\Omega dE'}(E, E', \theta) = \frac{4\alpha^2 (E')^2}{Q^4} \cos^2\left(\frac{\theta}{2}\right) \left[\frac{F_2(\nu, Q^2)}{\nu} + \frac{2F_1(\nu, Q^2)}{M} \tan^2\left(\frac{\theta}{2}\right)\right] + F_1 = \frac{1}{2} \sum_i e_i^2 f_i(x) , \qquad F_2 = x \sum_i e_i^2 f_i(x) .$$

My code for calculating the cross section.

//Inelastic Cross Section
double alpha = (1.0/137.0);
double A = 4*alpha*alpha*e_final[0]*e_final[0]*pow(cos(theta/2.0),2)/pow(Qsquared,2);
double B = F_two/mp;
double C = 2 * (F_two/xb) *pow(tan(theta/2),2);
double differoss = A*(B+C);

Counts of Xb for Beam energy of 10 GeV, Proton momentum = 0.25 GeV

Counts of Weighted Xb for Beam energy of 10 GeV, Proton momentum = 0.25 GeV Left: weight by cross section Right: weighted By F_2

Tried to Look at some calibration scripts.

10

Ntuple for block R.cer.a* from analyzer.

From .odef

TH1F Rchera 'Right arm Gas Cherenkov' R.cer.a 1000 0 4500 R.cer.a>0. For 0 and 1.

Experiment expert BPM and Harps

Figure 3: Hall A Beam Position Monitor read-out electronics for E93050, March-April 1998.

