Acceptance Check

Hanjie Liu 01/24/2019

Purpose:

Prove that the acceptance function is the same for different gas targets, so it can be canceled in ratio.

Method:

- 1. Yield $\propto ACC \times \sigma \longrightarrow ACC \propto Yield / \sigma$
- 2. ACC for one target could be gotten by plotting (x, Q2) or (v,θ) distribution, then divided each bin by the its radiative cross section. (use Bodel model)

The acceptance function bin in Q2 is small, which results in a big uncertainty on the ratio at the edge and is unable to see the expected flat area of ACC

ach bin is normalized by the maximum content

3. Divide D2 acceptance function by H1 acceptance function:

D2 ACC/H1 ACC

		D2 ACC/H1 ACC															hratio_kin0				
								-		.0	0/1	••••	.0	0						Entries	5824
																				Mean x	16.94
7.7																				Mean y	7.5
	E																			Std Dev x	1.074
7 65	E_																			Std Dev y	0.08094
1.00	E			1.09		1.83	0.92	0.79	2.2	0.67	0.94	1.1	0.68	4.49	0.74	0.37	2.22	0.87	0.28		
		0.99	0.98	1.04	1	1.01	0.98	1.01	1.02	0.99	0.93	1	1	1	0.95	0.92	0.98	1	1	0.91	
7.6		0.96	1	0.97	0.97	1	0.98	0.96	0.97	1.03	1.01	0.96	1	1.02	0.99	0.98	1.01	1.01	1.03	0.94	
	E	0.85	0.97	0.96	1	0.99	1	0.97	0.92	0.95	1	1.04	1.01	0.98	1.02	1.02	1.01	1.02	1	0.9	
7.55		0.93	1	0.97	0.94	0.96	1.01	0.96	0.96	0.98	0.98	0.95	0.96	0.98	1.03	0.95	1.05	0.99	1.02	0.8	
	F	0.94	1.04	1.01	0.96	0.97	1.03	1.04	1.03	1.02	1	1.03	1.01	0.98	0.94	1	1	0.99	0.96	1.22	
	F	0.96	0.93	1	0.93	0.97	1.02	1.01	0.97	0.97	0.95	1	1	0.98	0.99	1.03	0.97	0.93	0.92	0.97	
7.5		1.04	0.98	0.97	0.99	1	0.95	1.04	0.98	1	0.97	0.97	1.01	0.99	0.99	0.99	0.98	0.99	1.01	1.28	
	F	0.96	0.96	0.96	0.98	1.04	1	0.99	1.01	0.97	1.01	1.01	1.02	0.99	1.01	1.03	1	1.06	1.15	0.91	
7.45	—	0.64	0.92	1.03	1.02	0.98	0.95	1	0.95	0.96	1.02	1	0.97	0.94	1.01	0.97	0.97	0.94	0.89	0.64	
	F	0.69	1.04	0.97	0.96	1.02	1.03	0.98	0.98	1	0.99	0.99	1.02	1.04	1.04	0.99	0.96	0.93	0.99	1.22	
	F	0.72	0.92	0.94	1.01	0.98	1.01	1.04	0.99	0.99	1.06	0.99	1.07	1	0.99	1	0.99	0.85	1.1	0.16	
7.4	—	0.71	0.93	0.91	0.96	0.99	0.94	0.98	0.96	1	1.02	1.03	1.03	0.95	0.94	0.96	0.94	1.03	0.68	0.89	
	F	0.73	0.73	0.83	0.95	1.05	0.97	0.98	1.01	0.94	1.02	0.98	0.93	0.91	0.99	1.06	0.85	0.99	0.93	3.39	
7.35	—																				
	Fi i	.		ı I										ı I					. .		.
	14.5	15		15.5	5	1	6		16.5	5	1	7		17.5	5	1	8		18.5	19	

Conclusions:

- 1. The acceptance distribution looks reasonable;
- 2. The acceptance distribution between two targets are almost the same;
- 3. Maybe we should cut the edge events to get rid of poor acceptance.