P-shell to heavier Λ hypernuclei

Emiko Hiyama (Tohoku/RIKEN)

<u>Hypernuclear y-ray data (2019)</u> ¹⁰B (K⁻,π⁻γ) BNL E930('01) Since 1998 ⁷Li etc. (K⁻_{stop}, γπ⁻) ⁷Li (π⁺,K⁺γ) KEK E419 ⁹Be (Κ⁻,π⁻γ) BNL E930('98) 1/2⁺ T=1 3.88 1.08 NPA 754 (2005) 58c ³H 3/2+3.068 7/2+ 2,520 3.040 2 2 186 5/2+ 3.025 ¹⁹F(K⁻, π⁻γ) J-PARC E13 ⁴_AH PLB 62 (1976) 46 -5/2+ 2.050 PLB 83 (1979) 25. 1/2 1.266 _3/2⁺0.692 5/2+ 0.895 0.937 ⁴He(K, πγ) J-PARC E13 1+ 1.406 61 1 3/2+ 0.316 Few-body calculation 1/2+ ⁹_ABe 1/2+ 0 18 3H Shell model calculation PRL 88 (2002) 082501 PRL 84 (2000) 5963 4He NPA 754 (2005) 58c PRL 86 (2001) 1982 PRL 120 (2018) 132505 PLB 579 (2004) 258 PRL 115 (2015) 222501 PRC 73 (2006) 012501 High-resolution experiments ¹³C (Κ⁻,π⁻γ) BNL E929 (Nal) ¹⁶O (Κ⁻,π⁻γ) BNL E930('01) 1/2 10.98 $^{12}C(\pi^+, K^+\gamma)$ x Ap1/2_ **KEK E566** 3/2-10.83 x Ap3/2 \approx 2 6.786 ¹¹B (π⁺.K⁺γ) KEK E518 6.562 6.176 3/2+.1/2+ 3/2 4.229 E1 2.00 1/2 .: 2.31 1/2⁺ T=1 2.268 2.832 0 0.718 T=1 3/2+ We have been obtaining 7/2+0 263 0.161 information on ΛN 5/2+0 3/2+0 ¹⁰B 1/2+ 0 $^{11}_{\Lambda}B$ ¹¹C 150 $^{16}_{\Lambda}O$ $^{15}_{\Lambda}N$ two-body interaction. ¹²C 13C PRL 86 (2001) 4255 PRC 77 (2008) 054315 NPA835 (2010) 422 PTEP (2015) 081D01 PRL 93 (2004) 232501 PRC 65 (2002) 034607 EPJ A33 (2007) 247

 $V_{\Lambda N} = V_0 + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N V_{\sigma \cdot \sigma} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} + \mathbf{s}_N) V_{\text{SLS}} + \mathbf{L} \cdot (\mathbf{s}_{\Lambda} - \mathbf{s}_N) V_{\text{ALS}} + S_{12} V_{\text{tensor}} + \cdots$

$\Lambda N - \Sigma N$ coupling

Non-strangeness sector

Probability of Δ in nuclei is not large.

ΛN-ΣN coupling =>three-body force and CSB interaction

How do we obtain information on $\Lambda N-\Sigma N$ coupling?

(1)YN scattering experiment at J-PARC, Femtoscopic experiment (2) To study neutron-rich Λ hypernuclei at J-PARC

By neutron-rich Λ hypernuclei, we could obtain information on long-range part of ΛΝ-ΣΝ coupling. Long-range part of ΛΝΝ three-body force

Furthermore, we need short-range part of ANN three-body force.: important for the study of neutron star

CSB interaction

Now, it is interesting to see as follows:

(1)What is the level structure of A=7 hypernuclei without CSB interaction?

(2) What is the level structure of A=7 hypernuclei with CSB interaction?

Next we introduce a phenomenological CSB potential with the central force component only.

We include odd-state of CSB to reproduce the data of A=7 Λ hypernuclei. =>apply to A=10 Λ hypernuclei

Progress of Theoretical Physics, Vol. 128, No. 1, July 2012

Structure of ${}^{10}_{\Lambda}$ Be and ${}^{10}_{\Lambda}$ B Hypernuclei Studied with the Four-Body Cluster Model

Emiko HIYAMA and Yasuo YAMAMOTO

$$V_{AN}^{\text{CSB}}(r) = -\frac{\tau_z}{2} \Big[\frac{1+P_r}{2} (v_0^{\text{even,CSB}} + \boldsymbol{\sigma}_A \cdot \boldsymbol{\sigma}_N v_{\boldsymbol{\sigma}_A \cdot \boldsymbol{\sigma}_N}^{\text{even,CSB}}) e^{-\beta_{\text{even}} r^2} \Big]$$

$$+\frac{1-P_r}{2}(v_0^{\text{odd,CSB}}+\boldsymbol{\sigma}_A\cdot\boldsymbol{\sigma}_N v_{\boldsymbol{\sigma}_A\cdot\boldsymbol{\sigma}_N}^{\text{odd,CSB}})\,e^{-\beta_{\text{odd}}\,r^2}\,\Big],$$

Fig. 7. Calculated energy difference of ${}^{10}_{\Lambda}$ Be and ${}^{10}_{\Lambda}$ B, $\Delta B_{\Lambda}(B_{\Lambda}({}^{10}_{\Lambda}\text{B}) - B_{\Lambda}({}^{10}_{\Lambda}\text{Be})$, (a) without CSB, (b) with even-state CSB, and (c) with both even- and odd-state CSB interactions.

What about data by Gogami san?

 $^{10}{}_{\Lambda}\text{Be}~$ is interesting to investigate structure modified by addition of Λ particle.

Schematic illustration

Energy gain by Λ -particle addition $\Delta E(shell-like) > \Delta E(clustering)$

Interesting phenomena such as level crossing is seen in ⁹Be and ¹⁰Be combination.

How do we obtain information on $\Lambda N-\Sigma N$ coupling?

(1)YN scattering experiment at J-PARC, Femtoscopic experiment (2) To study neutron-rich Λ hypernuclei at J-PARC

By neutron-rich Λ hypernuclei, we could obtain information on long-range part of ΛΝ-ΣΝ coupling. Long-range part of ΛΝΝ three-body force

Furthermore, we need short-range part of ANN three-body force.: important for the study of neutron star

So far, search ${}^{6}_{\Lambda}$ H experiment has been done.

Conflict between FINUDA exp. and J-PARC exp.

Before doing full 4-body calculation, it is important and necessary to reproduce the observed binding energies of all the sets of subsystems in ⁶H. Namely, All the potential parameters are needed to adjust in the 2- and 3-body 6H βH subsystems. 6H ∧ n n n n Λ Λ

Among the subsystems, it is extremely important to adjust the energy and decay width of ⁵H core nucleus.

Framework:

To calculate the binding energy of $_{\Lambda}$ ⁶H, it is very important to reproduce the binding energy of the core nucleus ⁵H.

F	- 1	
(E_R, Γ_R) (MeV)		
J^{π}	1/2+	
⁵ H (full)	(1.57, 1.53)	
${}^{5}\mathrm{H}\left(d=0\right)$	(1.55, 1.35)	
Theor. [16]	(2.26, 2.93)	
Theor. [12]	(2.5-3.0, 3-4)	
Theor. [13]	(3.0-3.2, 1-4)	
Theor. [15]	(1.59, 2.48)	
Exp. [3]	$(1.7 \pm 0.3, 1.9 \pm 0.4)$	 We cited this experiment.
Exp. [8]	$(1.8 \pm 0.1, < 0.5)$	However, you have many
Exp. [4]	(1.8, 1.3)	different decay widths.
Exp. [5]	(2, 2.5)	width is strongly related to
Exp. [6]	(3, 6)	the size of wavefunction.
Exp. [9]	$(5.5 \pm 0.2, 5.4 \pm 0.6)$	Then, I hope that
		The decay width will be
		determined at RCNP this year.

[3] A.A. Korosheninnikov et al., PRL87 (2001) 092501
[8] S.I. Sidorchuk et al., NPA719 (2003) 13
[4] M.S. Golovkov et al. PRC 72 (2005) 064612
[5] G. M. Ter-Akopian et al., Eur. Phys. J A25 (2005) 315.

For the study of neutron-rich Λ hypernuclei,

We should exclude ambiguity of the energy and decay width of core nuclei.

For this purpose, ⁸He and ${}^{9}_{\Lambda}$ He is the best candidate to perform search experiment.

heavier Λ hypernuclei For example: Pb, Sn, Zr, La, Y etc. Istopes

Density of heavier nuclei is high and then, Λ particle is acting in such high dense matter.=> We could obtain information on the short-range part of Λ NN interaction.

In heavier nuclei, density becomes high.

 208 APb, 139 La, 89 Y: plan in the project at HIHR

I request the experimentalists to produce ¹¹²⁻¹²⁴Sn,⁹⁰⁻⁹⁶ Zr Λ hypernuclei. Heavy Λ hypernuclei exp. + theoretical cal. Isotope dependence of ΛNN three-body force

Determine ANN interaction

Reliable EOS

Effects of Many-body Interactions in the Hyperon with Skyrme and KIDS Functionals for Finite Nuclei and Nuclear Matter

Soonchul Choi,^{1,2} Emiko Hiyama,³ Chang Ho Hyun,^{4,*} and Myung-Ki Cheoun¹

¹Department of Physics, Soongsil University, Seoul 06978, Korea ²Center for Exotic Nuclear Studies.

Institute for Basic Science, Daejeon 34126, Korea

³Department of Physics, Tohoku University, Sendai 980-8578, Japan

⁴Department of Physics Education, Daegu University, Gyeongsan 38453, Korea

Submitted to EPJA

$$H_{\Lambda\rho} = \frac{3}{8} \rho_{\Lambda} \sum_{i=1}^{N_f} u_{3i} \left(1 + \frac{1}{2} y_{3i} \right) \rho_N^{1+i/3}$$

This new type of functional is added to the two-body interaction terms given as

$$H_{\Lambda N} = \frac{\hbar^2}{2m_{\Lambda}} \tau_{\Lambda} + u_0 \left(1 + \frac{1}{2}y_0\right) \rho_N \rho_\Lambda + \frac{1}{4} (u_1 + u_2) (\tau_{\Lambda} \rho_N + \tau_N \rho_\Lambda) + \frac{1}{8} (3u_1 - u_2) (\nabla \rho_N \cdot \nabla \rho_\Lambda) + \frac{1}{2} W_\Lambda (\nabla \rho_N \cdot \vec{J}_\Lambda + \nabla \rho_N \cdot \vec{J}_\Lambda).$$

Nuclear density functional theory: two-body interaction + many body force

Model parameters u_0 , y_0 , u_1 , u_2 , W_{Λ} , u_{3i} and y_{3i} :fitted so as to reproduce the data

Nuclei	$1s~({\rm MeV})$	$1p~({\rm MeV})$	$1d \ (MeV)$
$^{16}_{\Lambda}{ m O}$ [13, 14]	12.50 ± 0.35		
$^{28}_{\Lambda}{ m Si}$ [2, 15]	16.60 ± 0.20	7.0 ± 0.2	
$^{32}_{\Lambda}{ m S}$ [16]	17.50 ± 0.50		
$^{40}_{\Lambda} {\rm Ca} \ [17, 18]$	18.70 ± 1.1		
$^{51}_{\Lambda} V [19, 20]$	19.9 ± 1.0		
$^{89}_{\Lambda} Y [2, 20]$	23.10 ± 0.50	16.50 ± 4.1	9.1 ± 1.3
$^{139}_{\Lambda}$ La [2]	24.50 ± 1.20	20.40 ± 0.6	14.3 ± 0.6
$^{208}_{\Lambda} {\rm Pb} \ [2]$	26.30 ± 0.80	21.90 ± 0.6	16.8 ± 0.7

We construct 5 types interaction.

Apply to Sn

The energies of core nuclei, Sn isotope are reproduced.

Summary

 $\Lambda N-\Sigma N$ coupling: neutron-rich Λ hypernuclei It would be better to have deeper binding.

Heavier neutron-rich Λ hypernuclei Sn Isotope?