Fermi motion effects in electroproduction of hypernuclei

Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics, October 6, 2022

> Petr Bydžovský *in collaboration with* Daria Denisova, Dalibor Skoupil, and Petr Veselý *Nuclear Physics Institute, Řež, Czech Republic*

Outline:

Introduction

Formalism: optimal factorization, elementary amplitude in CGLN-like form, production amplitude, optimum on-shell approximation Results: effects from non zero proton momentum (Fermi motion) Summary and outlook

more details can be found in arXiv:2209.0088[nucl-th]

Introduction

• It is quite complicated to study the YN interaction, *e.g.* Ap scattering in a liquid-hydrogen target:

$$\begin{array}{c} \gamma + \textbf{\textit{p}} \rightarrow \textbf{\textit{K}}^{+} + \textbf{\Lambda} \\ \textbf{\Lambda} + \textbf{\textit{p}} \rightarrow \textbf{\textit{p}} + \pi^{-} + \textbf{\textit{p}}' \end{array}$$

see J. Rowley etal (CLAS Collaboration), Phys. Rev. Lett. 127, 272303 (2021), \rightarrow information on the bare YN interaction (Nijmegen model)

• The γ-ray and reaction spectroscopy of Λ hypernuclei can provide information on the spin-dependent part of effective ΛN interaction.

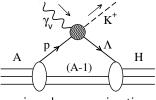
$$V_{\Lambda N} = V_0 + V_\sigma \ \vec{s}_\Lambda \cdot \vec{s}_N + V_\Lambda \ \vec{\ell}_{\Lambda N} \cdot \vec{s}_\Lambda + V_N \ \vec{\ell}_{\Lambda N} \cdot \vec{s}_N + V_T \ S_{12} \,.$$

see, e.g. D. J. Millener, Nucl. Phys. A 804, 84 (2008)

• To obtain reliable information from hypernucleus electroproduction data we need to understand the reaction mechanism well, e.g. to estimate systematic uncertainties due to various approximations.

Introduction - frosen-proton approximation

• In previous DWIA calculations of the cross sections in electroproduction of hypernuclei, e.g. in AIP **2130** (2019) 020014, Phys. Rev. C **99** (2019) 054309, any motion of the initial proton was neglected assuming the frosen-proton approximation ($\vec{p_p} = 0$).



impulse approximation

- In the laboratory frame, $\vec{P}_A = 0$, and with $\vec{p}_p = 0$ one can use a quite simple two-component CGLN form of the elementary-production amplitude \mathcal{J}_{μ} in the many-particle matrix element $M_{\mu} = \langle \Psi_{\rm H} | \sum_i \chi_{\gamma} \chi_{\rm K}^* \mathcal{J}_{\mu}^i | \Psi_{\rm A} \rangle$.
- However, in ¹²C the proton in *p* orbit moves with the average momentum 179 MeV/c which is comparable to a momentum transfer, $\vec{\Delta} = \vec{p}_{\Lambda} - \vec{p}_{p} = \vec{p}_{\Lambda}$, of about $|\vec{\Delta}| = 250$ MeV/c.
- In the following we will show effects in the cross sections from a non zero proton momentum (the results are taken from arXive:2209.00881).

< 回 > < 三 > < 三 >

Formalism - optimal factorization

• The amplitude of production of hypernuclei by virtual photons

$$\gamma_{v}(q) + A(P_{A}) \longrightarrow H(P_{H}) + K^{+}(p_{K})$$

is assumed in optimal factorization approximation replacing $\mathcal{J}_{\mu}(\vec{p}_{\mathcal{K}}, \vec{q}, \vec{p}_{p}) \rightarrow \mathcal{J}_{\mu}(\vec{p}_{\mathcal{K}}, \vec{q}, \vec{p}_{eff})$ in the full-folding integral

$$\begin{aligned} \mathcal{T}_{\mu} &= \ \mathsf{Z}\,\mathsf{Tr}\left[\mathcal{J}_{\mu}(\vec{p}_{K},\vec{q},\vec{p}_{\mathrm{eff}})\int d^{3}\xi\,e^{(iB\,\vec{\Delta}\cdot\vec{\xi})}\,\chi_{K}^{*}(\vec{p}_{KH},B\vec{\xi}) \right. \\ &\times \,\int d^{3}\xi_{1}...d^{3}\,\xi_{A-2}\Phi_{\mathsf{H}}^{*}(\vec{\xi}_{1},...\vec{\xi}_{A-2},\vec{\xi})\Phi_{\mathsf{A}}(\vec{\xi}_{1},...\vec{\xi}_{A-2},\vec{\xi})\right] \end{aligned}$$

where \vec{p}_{eff} is an effective proton momentum and $B = (A - 1)/(A - 1 + m_{\Lambda}/m_p)$.

• In previous calculations $\vec{p}_{eff} = 0$. A dependence of the elementary-production amplitude \mathcal{J}_{μ} on the proton momentum must be determined. The standard CGLN forms are for the laboratory ($\vec{p}_{eff} = 0$) and c. m. ($\vec{p}_{eff} = -\vec{q}$) frames.

Formalism - elementary amplitude in the CGLN-like form

• The invariant amplitude of K⁺ production on a free proton

$$\gamma_{\mathsf{v}}(\boldsymbol{q},\varepsilon) + \mathsf{p}(\boldsymbol{p}_{\boldsymbol{p}},\eta_{\boldsymbol{p}}) \longrightarrow \Lambda(\boldsymbol{p}_{\Lambda},\eta_{\Lambda}) + \mathsf{K}^{+}(\boldsymbol{p}_{\mathcal{K}})$$

can be expressed via six gauge invariant operators $(\hat{M}_i \cdot \varepsilon)$

$$(\mathcal{M} \cdot \varepsilon) = \bar{u}(p_{\Lambda}, \eta_{\Lambda}) \gamma_5 \sum_{i=1}^{6} (\hat{M}_i \cdot \varepsilon) A_i(q^2, s, t) u(p_{\rho}, \eta_{\rho})$$

 $u(p,\eta)$ is a solution of Dirac equation for on-mass-shell particles

• This form is Lorentz and gauge invariant, depends on the momenta \vec{p}_{p} , \vec{q} , and \vec{p}_{K} but cannot be directly used in the non relativistic expression for the many-particle matrix element $\langle \Psi_{\rm H} | \chi_{\gamma} \chi_{\rm K}^* (\mathcal{J} \cdot \varepsilon) | \Psi_{\rm A} \rangle$ for which a two-componet form is needed.

Formalism - the two-component form

• The two-component form is obtained assuming a new gauge $\epsilon_{\mu} = \varepsilon_{\mu} - \varepsilon_0 q_{\mu}/q_0 = (0, \vec{\epsilon})$ and

$$(\mathcal{M} \cdot \varepsilon) = \bar{u}_{\Lambda} \gamma_5 \sum_{i=1}^{6} (\hat{\mathsf{M}}_i \cdot \varepsilon) A_i u_p = \mathsf{X}^{\dagger}_{\Lambda} (\vec{J} \cdot \vec{\epsilon}) \mathsf{X}_p$$

with Pauli spinors X_{ρ} and X_{Λ} and the amplitude $\mathcal{J}_{\mu} = (J_0, \vec{J})$.

• This general two-component form has 16 different terms with 16 CGLN amplitudes *G_k* expressed via the scalar amplitudes *A_i*

$$\vec{J} \cdot \vec{\epsilon} = G_1 \left(\vec{\sigma} \cdot \vec{\epsilon} \right) + G_2 i (\vec{p}_p \times \vec{q} \cdot \vec{\epsilon}) + \dots G_{15} \left(\vec{\sigma} \cdot \vec{p}_K \right) (\vec{p}_p \cdot \vec{\epsilon}) + G_{16} \left(\vec{\sigma} \cdot \vec{p}_K \right) (\vec{p}_K \cdot \vec{\epsilon})$$

• In a special case, $ec{p}_p=0$, (similarly in the c.m. frame, $ec{p}_p=-ec{q}$)

$$\vec{J}_{LAB} \cdot \vec{\epsilon} = G_1 \left(\vec{\sigma} \cdot \vec{\epsilon} \right) + G_3 i (\vec{p}_K \times \vec{q} \cdot \vec{\epsilon}) + G_8 \left(\vec{\sigma} \cdot \vec{q} \right) (\vec{q} \cdot \vec{\epsilon}) + G_{10} \left(\vec{\sigma} \cdot \vec{q} \right) (\vec{p}_K \cdot \vec{\epsilon}) + G_{14} \left(\vec{\sigma} \cdot \vec{p}_K \right) (\vec{q} \cdot \vec{\epsilon}) + G_{16} \left(\vec{\sigma} \cdot \vec{p}_K \right) (\vec{p}_K \cdot \vec{\epsilon})$$

is a standard form with only six CGLN amplitudes used in previous calculations

Petr Bydžovský (NPI Řež)

6 / 17

イロト イポト イヨト イヨト 二日

• In the many-particle calculations the spherical form is more suitable

$$ec{J}\cdotec{\epsilon}=-\sqrt{3}\,[\,J^{(1)}\otimes\epsilon^{(1)}\,]^0=\sum_{\lambda=\pm1,0}(-1)^{-\lambda}\,\left(\sum_{S,\eta}\,\mathcal{F}^S_{\lambda\eta}\,\sigma^S_\eta
ight)\,\epsilon^{(1)}_{-\lambda}$$

• Then the spin-non-flip and spin-flip parts and the transverse and longitudinal parts can be easily separated:

$$\vec{J} \cdot \vec{\epsilon} = - \epsilon_{1}^{1} \left(\mathcal{F}_{-10}^{0} + \sigma_{1}^{1} \mathcal{F}_{-11}^{1} + \sigma_{0}^{1} \mathcal{F}_{-10}^{1} + \sigma_{-1}^{1} \mathcal{F}_{-1-1}^{1} \right) + \\ + \epsilon_{0}^{1} \left(\mathcal{F}_{00}^{0} + \sigma_{1}^{1} \mathcal{F}_{01}^{1} + \sigma_{0}^{1} \mathcal{F}_{00}^{1} + \sigma_{-1}^{1} \mathcal{F}_{0-1}^{1} \right) - \\ - \epsilon_{-1}^{1} \left(\mathcal{F}_{10}^{0} + \sigma_{1}^{1} \mathcal{F}_{11}^{1} + \sigma_{0}^{1} \mathcal{F}_{10}^{1} + \sigma_{-1}^{1} \mathcal{F}_{1-1}^{1} \right),$$

 σ_{η}^{1} are the spherical Pauli matrixes.

• The twelve spherical amplitudes $\mathcal{F}_{\lambda\eta}^{S}$ are expressed via the CGLN-like amplitudes G_k .

• It is suitable to introduce reduced (partial-wave) amplitudes:

$$\mathcal{T}_{\lambda}^{(1)} = \sum_{J_{m}} rac{1}{[J_{H}]} C^{J_{H}M_{H}}_{J_{A}M_{A}J_{m}} A^{\lambda}_{J_{m}}$$

which read as

$$A_{Jm}^{\lambda} = \frac{1}{[J]} \sum_{S\eta} \mathcal{F}_{\lambda\eta}^{S} \sum_{LM} C_{LMS\eta}^{Jm} \sum_{\alpha'\alpha} \mathcal{R}_{\alpha'\alpha}^{LM} \mathcal{H}_{\ell'j'\ell j}^{LSJ} \left(\Psi_{H} || \left[b_{\alpha'}^{+} \otimes a_{\alpha} \right]^{J} || \Psi_{A} \right)$$

with radial integrals $\mathcal{R}_{\alpha'\alpha}^{LM} = \int R_{\alpha'}^* F_{LM} R_{\alpha}$ and OBDME calculated in the Shell model

• The transversal and longitudinal response functions:

$$\begin{split} \frac{d\sigma_T}{d\Omega_K} &= \frac{\beta}{2(2J_A+1)} \sum_{Jm} \frac{1}{2J+1} \left(|A_{Jm}^{+1}|^2 + |A_{Jm}^{-1}|^2 \right) \\ &\frac{d\sigma_L}{d\Omega_K} &= \frac{\beta}{2J_A+1} \sum_{Jm} \frac{1}{2J+1} |A_{Jm}^0|^2 \,, \end{split}$$

8 / 17

Formalism - optimum on-shell approximation

- $|\vec{p}_{\mathcal{K}}|$ must be determined from energy consertvation in the 2-body $(|\vec{p}_{\mathcal{K}}|_{2b})$ or many-body $(|\vec{p}_{\mathcal{K}}|_{mb})$ systems
- as we requite that the elementary amplitude is on-energy-shell we use $|\vec{p}_K|_{2b}$ for the amplitude but for the other quantities both values can be used: $|\vec{p}_K|_{2b}$ in the "2b" variant and $|\vec{p}_K|_{mb}$ in the "2b-ea" variant of calculation
- in the 2b variant the many-body energy conservation is violated and in the 2b-ea variant we use two different values of $|\vec{p}_K|$
- the optimum proton momentum from

$$E_{\gamma} + \sqrt{m_p^2 + (ec{p}_{opt})^2} = \sqrt{m_K^2 + |ec{p}_K|_{mb}^2} + \sqrt{m_\Lambda^2 + (ec{\Delta} - ec{p}_{opt})^2}$$

then the elementary amplitude is on-shell and we use one value of kaon momentum, $|\vec{p}_K|_{2b} = |\vec{p}_K|_{mb}$; $\vec{\Delta} = \vec{q} - \vec{p}_K$ and $\cos \theta_{\Delta p}$ must be chosen

• this we denote as the optimum on-shell approximation

Results - Fermi motion effects

- We show the cross sections in $^{12}C(e,e'K^+)^{12}B_{\Lambda}$ calculated with various \vec{p}_{eff} :
 - a) frosen proton, $\vec{p}_{eff}=0$ and $\vec{p}_{\Lambda}=\vec{\Delta}=\vec{q}-\vec{p}_{K}$ (old calculations)

b) frosen
$$\Lambda$$
, $\vec{p}_{eff} = -\vec{\Delta}$ and $\vec{p}_{\Lambda} = 0$

c) optimum value, $ec{p}_{eff}=ec{p}_{opt}$ with $heta_{\Delta p}=180^\circ$ (our choice)

mean value from the mean kinetic energy, $|\vec{p}_{eff}| = \langle p \rangle = \sqrt{2\mu \langle T_{kin} \rangle}$:

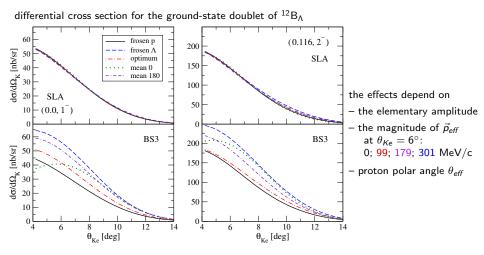
d)
$$|ec{p}_{e\!f\!f}|=179$$
 MeV for $^{12}{
m C}$ and $heta_{e\!f\!f}=0^\circ$, (z-axis $\|ec{q}/|ec{q}|$)

e)
$$|\vec{p}_{eff}| = 179$$
 MeV and $\theta_{eff} = 180^{\circ}$

- calculations of the angle and energy dependent cross sections with
 - the Saclay-Lyon and BS3 (Phys.Rev.C93,025204(2018)) amplitudes;
 - the hybrid variant 2b-ea;
 - the nucleus-hypernucleus structure (OBDME) by John Millener;
 - kinematics: $Q^2 = 0.06$ (GeV/c)², $\varepsilon = 0.7$, $\Phi_K = 180^{\circ}$; angular dependence with $E_{\gamma} = 2.2$ GeV, energy dependence for $\theta_{Ke} = 6^{\circ}$.

 < □ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 < ⊡ >
 <t

Results - Fermi effects in the angle dependent cross sections



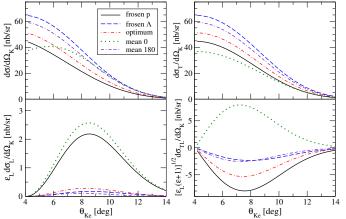
11 / 17

Results - separated contributions to the cross section

the ground-state $J_H^P = 1^-$ of ${}^{12}B_{\Lambda}$ with Λ in s orbit; ${}^{12}C$ target g.s. $J_A^P = 0^+ \Rightarrow J = J_H$

$$A_{Jm}^{\lambda} = \frac{1}{[J]} \sum_{S\eta} \mathcal{F}_{\lambda\eta}^{S} \sum_{LM} C_{LMS\eta}^{Jm} \sum_{\alpha'\alpha} \mathcal{R}_{\alpha'\alpha}^{LM} \mathcal{H}_{\ell'j'\ell j}^{LSJ} \left(\Psi_{H} || \left[b_{\alpha'}^{+} \otimes a_{\alpha} \right]^{J} || \Psi_{A} \right)$$

a "dynamical" selection rule: the contributions with $M = \eta = 0$ dominate



the longitudinal amplitude does not contribute due to the selection rule:

$$A_{10}^0 \sim C_{1010}^{J_H 0} = C_{1010}^{10} = 0$$

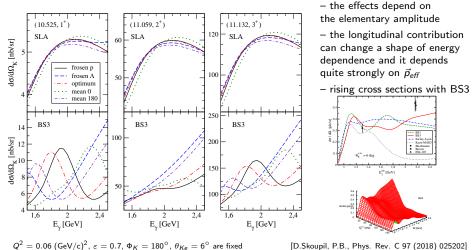
 \Rightarrow L nad TL contributions are not too much important

even more, they mostly cancel each other

in this case the photoand electroproduction cross sections reveal similar effects

Results - Fermi effects in the energy dependent cross sections

excited states of ${}^{12}B_{\Lambda}$ with the Λ in p orbit the selection rule: $A^0_{Im} \sim C^{J_H 0}_{2010} \Rightarrow$ the longitudinal contribution only for odd J_H

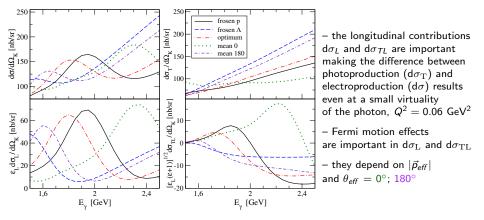


 $\Rightarrow E_e, E'_e$, and θ_e change according to E_γ

Results – separated contributions to the cross section

excited state (11.132, 3⁺) of $^{12}B_{\Lambda}$

the longitudinal part of the resduced amplitude contributes: $A_{30}^0 \sim C_{2010}^{30} = \sqrt{3/5}$



14 / 17

Results - comparison with experimental data

data (crs in $nb/sr^2/GeV$) are from

at kinematics	Data		Theoretical predictions				
$E_{\gamma} = 2.21 \text{ GeV}, \ Q^2 = 0.064 \ (\text{GeV/c})^2,$ $\varepsilon = 0.7, \ \theta_{Ke} = 6^\circ, \ \Phi_K = 180^\circ$	<i>E_x</i> (MeV)	crs	E _x (MeV)	JP	old	ross section NEWa	NEWb
· Re · R			0.000	1-	0.524	0.611	0.741
calculations are with the BS3 amplitude, variant 2b-ea, and	0.0	4.51	0.116 sum:	2	2.172 2.696	2.535 3.145	2.677 3.418
			2.587	1-	0.689	0.805	0.956
OBDME by John Millener			2.593	0-	0.071	0.082	0.027
theoretical predictions:	2.62	0.58	sum:		0.760	0.887	0.983
old – from P.R.C 99(2019)054309			4.761	2	_	0.022	0.022
			5.642	2	0.359	0.422	0.429
NEWa – frozen proton			5.717	1^{-}	0.097	0.113	0.132
$ec{p}_{e\!f\!f}=$ 0, $ec{p}_{\Lambda}=$ 301, $ec{\Delta}=$ 301 MeV/c	5.94	0.51	sum:		0.456	0.558	0.583
$ \vec{p}_K _{mb}$ = 1964, $ \vec{p}_K _{2b}$ = 1931 MeV/c			10.480	2+	0.157	0.175	0.196
NEWb – optimum momentum			10.525	1+	0.100	0.111	0.098
$\vec{p}_{eff} = 99, \ \vec{p}_{\Lambda} = 170, \ \vec{\Delta} = 269 \ \text{MeV/c}$			11.059	2+	0.778	0.870	0.973
i chi i i ni			11.132	3+	1.324	2.169	2.099
$ ec{p}_{K} _{mb} = ec{p}_{K} _{2b} =$ 1964 MeV/c			11.674	1^{+}	0.047	0.085	0.087
comparison old \leftrightarrow NEWa shows	10.93	4.68	sum:		2.406	3.410	3.453
improvements in the model			12.967	2+	0.447	0.504	0.556
•			13.074	1^{+}	0.196	0.219	0.191
comparison NEWa \leftrightarrow NEWb shows			13.383	1^{+}	_	0.0008	0.0008
Fermi motion effects	12.65	0.63	sum:		0.643	0.724	0.748

at 0 and 11 MeV

3

Conclusions and outlook

- effects from the proton Fermi motion in electroproduction of ${}^{12}B_{\Lambda}$ were shown and discussed in a wide kinematical region;
- the effects depend on the elementary amplitude and kinematics and are more apparent in the longitudinal contributions;
- chosing various proton momentum can model resonant structures in the energy dependent cross section;
- a general (proton momentum dependent) two-component (CGLN-like) form of the elementary amplitude was constructed;
- the optimum on-shell approximation was suggested that effectively accounts for the proton motion and avoids uncertainty in determination the kaon momentum;
- the results in the optimum on-shell approximation are, in general, in better agreement with experimental data than our previous results;
- in the next analysis we will study effects from various structure calculations also extending the DWIA calculations for the s-d shell hypernuclei;

Thank you for your attention!

WEPH, October 6, 2022

→

3