Dual tracks study

Hanjie Liu

ACC: $a b s($ theta $)<0.06 \& \& a b s(p h i)<0.03 \& \& a b s(d p)<0.045$; beta: beta>0;
Ep: E/p>0.75;
CK: cer.asum_c>2000;
VZ: abs(tr.vz)<0.1;
trigger2: (s0\&s2)\&cer

After (beta+Ep+ACC+CK+VZ+trigger2) cut, 99.6\% events have only one track; 0.3\% events have two tracks;

first two tracks x vs y
second two tracks x vs y

tr.d_x:tr.d_y

Q3 plane

the first track of Dual tracks events looks normal

How Analyzer construct tracks:

- Only VDC planes variable used;
- Find clusters at four VDC planes->fit tracks;
- Dual track events: at least two clusters at each plane;

For one event: clusters found for each plane; (same color for matched clusters between different VDC planes)

How to select the good one from two tracks

1. S2 hit paddle

- S2 hit paddles: both left PMT and right PMT tdc bigger than 0;
- L.s2.trdx: the distance between the track projection and the closest hit in S2 dispersive plane;
- s2.trdx should be smaller than half paddle width ($\sim 0.07 \mathrm{~m}$)

For example: s2.tr_dx for only one track good events s2.trdx for one track events

How to select the good one from two tracks

- S2 hit paddles: both left PMT and right PMT tdc bigger than 0;
- Apply abs(L.s2.trdx[0])<0.075 and abs(L.s2.trdx[1])<0.075 to the two tracks events separately;

For 162 dual tracks' events:

	total events	first track pass trdx cut	second track pass trodx cut
s2 with1 hit	59	53	12
s2 with $\mathbf{2}$ hits	78	75	63
s2 with $\mathbf{3}$ hits	22	21	16
s2 with $\mathbf{4}$ hits	3	3	3
sum	162	152	94

- By using s2.trdx cut, could get rid of $\sim 42 \%$ second track
- ~6\% first track isn't good, needs to use the second track

How to select the good one from two tracks

(After requiring abs(s2.trdx[0])<0.075 \&\& abs(s2.trdx[1])<0.075, 87 events left;)

2. Shower clusters

- For a good electron track, it should be closed to the cluster in shower;
problems:
Analyzer only gives the position of the largest clusters;
There could be a second cluster for the other track;

quick look:
- find all the blocks that corrected ADC value is bigger than 100;
- find the closest block (with >100 ADC) to the track projection; ps_trpad
- calculate the distance between the track projection and the block center; ps_dx

For 87 events:

- abs(ps_trpad[0]\%17-ps_trpad[1]\%17)<3: 76
 lots of clusters at the edge; >> bad construction at edge;
>> edge scattering;
- abs(ps_trpad[0]\%17-ps_trpad[1]\%17)>=3: 11
two well separated clusters in shower: two electrons(2) cluster: electron+pion/muon (9)

Conclusions:

1. The focal plane distribution of the first track in dual tracks events look similar as the only one track good events distribution;
2. Analyzer construct two tracks because there are at least two clusters in each VDC plane;
3. Analyzer sort tracks by chi2/ndof;
4. By using abs(s2.trdx)<0.075, can get rid of about 42% of second tracks; On the other hand, the first track is not always the better one;
5. The relation between the track projection and the clusters in shower shows that some dual tracks come from two electrons, some come from one electron and one pion/ muon, another are probably bad construction or edge scattering messed up construction;

MARATHON (time calibration might have issue)
L.s0.X_t[L.so.trpad]]L.s0.trx \{L.tr.n==1\&\&L.s0.trpad>-1\}

GMP

L.s0.x_t[L.s0.trpad]:L.s0.trx \{L.tr.n==1\&\&L.s0.trpad>-1\}

L.s2.y_t[L.s2.trpad]:L.s2.try \{L.tr.n==1\&\&L.s2.trpad>-1\}

L.s2.y_t[L.s2.trpad]:L.s2.try \{L.tr.n==1\&\&L.s2.trpad>-1\}

backup

Two electrons

first track hit block (rough): 5
second track: $0.773-0.004$
second track hit block (rough): 8

One electron+pion/muon

------ Event 7--------

****** cer ******

-2.8	-5.4	4912.9	37.0	-6.5	7.6	18.2	17.6	-2.0

first track: -0.288 -0.067
first track hit block (rough): 4
second track: 0.2060 .009
second track hit block (rough): 7

