Dual tracks study

Hanjie Liu

ACC: abs(theta)<0.06 && abs(phi)<0.03 && abs(dp)<0.045; beta: beta>0; Ep: E/p>0.75; CK: cer.asum_c>2000; VZ: abs(tr.vz)<0.1; trigger2: (s0&s2)&cer

Run 1213 (tritium kin1)

After (beta+Ep+ACC+CK+VZ+trigger2) cut, 99.6% events have only one track; 0.3% events have two tracks;

Focal plane

tr.d_x:tr.d_th

tr.d_y:tr.d_ph

How Analyzer construct tracks:

- Only VDC planes variable used;
- Find clusters at four VDC planes->fit tracks;
- Dual track events: at least two clusters at each plane;

For one event: clusters found for each plane; (same color for matched clusters between different VDC planes)

How to select the good one from two tracks

1. S2 hit paddle

- S2 hit paddles: both left PMT and right PMT tdc bigger than 0;
- L.s2.trdx: the distance between the track projection and the closest hit in S2 dispersive plane;
- s2.trdx should be smaller than half paddle width (~0.07m)

For example: s2.tr_dx for only one track good events s2.trdx for one track events

How to select the good one from two tracks

- S2 hit paddles: both left PMT and right PMT tdc bigger than 0;
- Apply abs(L.s2.trdx[0])<0.075 and abs(L.s2.trdx[1])<0.075 to the two tracks events separately;

For 162 dual tracks' events:

	total events	first track pass trdx cut	second track pass trdx cut
s2 with1 hit	59	53	12
s2 with 2 hits	78	75	63
s2 with 3 hits	22	21	16
s2 with 4 hits	3	3	3
sum	162	152	94

- By using s2.trdx cut, could get rid of ~42% second track
- ~6% first track isn't good, needs to use the second track

How to select the good one from two tracks

(After requiring abs(s2.trdx[0])<0.075 && abs(s2.trdx[1])<0.075, 87 events left;)

2. Shower clusters

For a good electron track, it should be closed to the cluster in shower;
 problems:

Analyzer only gives the position of the largest clusters; There could be a second cluster for the other track;

quick look:

- find all the blocks that corrected ADC value is bigger than 100;
- find the closest block (with >100 ADC) to the track projection; ps_trpad
- calculate the distance between the track projection and the block center; ps_dx

For 87 events:

ullet

abs(ps_trpad[0]%17-ps_trpad[1]%17)<3: 76

Conclusions:

- 1. The focal plane distribution of the first track in dual tracks events look similar as the only one track good events distribution;
- 2. Analyzer construct two tracks because there are at least two clusters in each VDC plane;
- 3. Analyzer sort tracks by chi2/ndof;
- By using abs(s2.trdx)<0.075, can get rid of about 42% of second tracks; On the other hand, the first track is not always the better one;
- The relation between the track projection and the clusters in shower shows that some dual tracks come from two electrons, some come from one electron and one pion/ muon, another are probably bad construction or edge scattering messed up construction;

MARATHON (time calibration might have issue)

h1 323675 Entries 0.006596 Mean x Mean y -3.603Std Dev x 0.07463 Std Dev y 0.4292 00 1000 800 600 400 200 -0.3 0.4 0.5 0.3 y_t=c/2*(Rt_c-Lt_c)

L.s2.y_t[L.s2.trpad]:L.s2.try {L.tr.n==1&&L.s2.trpad>-1}

GMP

backup

Two electrons

<pre> ****** 6.9 first t first t second second</pre>	Event 1 cer ***** -8.7 rack: -0 rack hit track: 0 track hit	 * .349 0.0 block (ro .773 -0. block (r	5435.4 64 ugh): 5 004 ough): 8	12.6	23.9	13.9	28.7	3623.2	3.2							
*** pre -11.7 62.4	e-shower & 184.5 1709.1	& shower = 0.6 18.3	**** -3.7 16.2	10.5 -11.4	5.7 -6.8	-1.6 9.6	1.4 -7.2	-5.1 -3.9	22.0 -4.0	1.7 4.9	1122.1 3.5	3.5 -1.6	11.2 8.9	-1.0 0.9	-6.0 9.6	-9.8 -9.6
-8.3 53.7	23.5 1122.2	7.8 -0.7	0.7 -5.5	16.3 -8.1	8.3 -4.7	-8.8 -17.3	-0.8 -2.9	16.5 -5.6	-5.2 -18.7	3.7 -0.8	1402.1 -1.9	31.5 -5.9	9.7 6.3	-4.0 18.7	2.8 13.5	11.5 -8.4
first t first t	rack: -0 rack hit	.444 0.1 block: (39 -0.545 11,0) (11	5 0.129 L,0)							\smile					
second second ****** 10.7 first first second second	Event 64 cer **** 13.8 track: 0 track hit track hit	 ** -10.0 .234 0.0 block (r -0.212 0 t block (29.8 1) 29.8 19 ough): 7 .027 rough): 5	2.2	516.0	835.5	3018.2	7.5	23.8							
*** pr -9.0 14.3	re-shower 1.1 -2.7	&& shower 3.8 4.3	**** 2.2 -2.6	-2.7 5.8	6.7 -3.2	1269.0 9.6	6.4 2.1	5.1 0.3	33.2 -1.0	806.2 0.4	6.2 -0.7	4.6 -7.8	-0.7 2.2	-9.0 -5.5	-2.9 -3.7	-18.4 -46.7
2.7 -14.4	1.7 -2.4	9.3 -4.0	-5.5 -7.0	-4.0 -6.5	60.3 16.5	1012.4 756.5	-0.8 -5.8	-2.8 1.2	14.8 8.0	816.2 19.0	-6.4 -1.9	12.2 -2.8	6.5 7.6	4.5 -18.7	-0.7 8.5	-16.3 -23.7
first first second	track: 0 track hit track:	.337 0.0 block: -0.243 0	44 0.250 (6,0) (6, .080 -0.3	0.031 ,0) 339 0.069	9											
second	l track:	(10,0) (10,0)													

One electron+pion/muon

----- Event 7-----***** cer ***** -2.8 -5.4 4912.9 37.0 -6.5 7.6 18.2 17.6 -2.0 9.0 first track: -0.288 -0.067 first track hit block (rough): 4 second track: 0.206 0.009 second track hit block (rough): 7 *** pre-shower && shower **** -0.9 3.5 -0.4 -3.7 0.6 8.7 115.1 -1.5 -3.0 -6.1 2.8 -4.5 -10.9 4.2 -0.0 -5.0 4.7 -11.1 4.5 -14.0 -2.6 -2.3 -9.3 0.9 1.0 -5.0 2.0 1835.4 40.9 -8.9 -0.6 0.9 2.4 18.8 -1.2 -15.2 -8.3 -4.1 -15.0 -5.5 -14.1 1.2 -1.6 -0.8 5.6 -7.8 -3.7 -11.6 3.1 -16.4 -0.5 -5.3 -8.9 -8.9 -8.4 -14.6 -3.2 -0.2 119.6 -2.2 3.3 201.1 803.9 10.8 -10.4 7.7 -19.7 -14.0 first track: -0.344 -0.143 -0.442 -0.163

first track hit block: (10,1) (11,1)

second track: 0.236 0.015 0.143 0.000 second track: (6,0) (7,0)