Luminosity normalized Yields D2 Luminosity Normalized yields

Luminosity normalized Yields

- 1. $Yield = Number of Electrons \rightarrow Raw Count$
- 2. $\frac{NormalizedYield_i}{Luminosity} \rightarrow \text{Comparing}$ runs/ runs of different targets
- 3. $NormalizedYield_i = \frac{Ne_i}{Luminosity} * Corrections$ Comparing to Monte Carlo or other settings

Luminosity

$$Luminosity_{run} = \frac{Qe_{run} * TargetThickness * Na}{atomicmass}$$

Only the luminosity of a single run, so sum these up for each run to look normalize an entire setting!

$$TotalLuminosity = \Sigma \frac{Qe_{run} * TargetThickness * Na}{atomicmass}$$

Then include cm2 to NB conversion: 1e33

Corrections

• Live time →

$$LiveTime = \frac{TriggerCount*Prescale}{ScalerCount}$$

- Density Correction is applied by a factor to modify the Target Thickness and correct the luminosity.
 Use parameters stored in SQL DB to calculate these on a run by run basis.
 - Parameters provide by Tong!

 Positron Correction: Event by event correction, calculate from fits by Tong.

$$PositronCorrection = \frac{e^+}{e^-}$$

$$\frac{+}{e^{-}}$$
 $PC = 1 - \frac{e^{+}}{e^{-}}$

Corrections Cont.

- End Cap contamination Table provide by Tong
 - ECC from table in the form of Y_{al}/Y_{tgt}
 - Correction = 1-ECC
- Radiative Corrections
 - Currently use the Bodek Fit in "externals" provided by Dave Gaskell. Same routines shown by Hanjie
 - Generate large 2D table in steps of E` and theta
 - Interpolate between 4 points to approximate the RC factor for that event.

Normalized Yield

