Tritium Elastic Sieve Energy Loss

Scott Barcus 4/25/17

Introduction

- Experiment E12-14-009 requires a special sieve to be constructed to keep rates acceptable.
- Goal is to knock electrons incident on plate out of momentum acceptance.
- HRS momentum acceptance is $-4.5\% < \delta p/p < 4.5\%$.
 - E_{lhrs} =1070 MeV $\rightarrow E_{min}$ =1021.85 MeV
 - E_0 =1100MeV → 7.1% energy loss.

Theory

- At energies above a few tens of MeV Bethe-Bloch collisional losses are minimal and Bremsstrahlung dominates.
- Bremsstrahlung loss depends of E_0 and electric field the electron experiences.
 - Cross section: E_0 , impact parameter and Z.
- Screening of the nucleus by electrons: $\zeta = \frac{100m_ec^2h\nu}{E_0EZ^{-1/3}}$
 - If $m_ec^2 \ll E_0 \ll 137m_ec^2Z^{-1/3} \rightarrow \zeta \gg 1 \rightarrow$ no screening.
 - If $E_0 >> 137m_ec^2Z^{-1/3} \rightarrow \zeta \sim 0 \rightarrow \text{ complete screening.}$
 - AI = 29.77 and W = 16.67 \rightarrow complete screening.

Energy Loss Calculation

• Cross section for complete screening (Leo):

$$d\sigma = 4Z^2 r_e^2 \alpha \frac{d\nu}{\nu} \left\{ \left(1 + \epsilon^2 - \frac{2\epsilon}{3} \right) \left[\ln \left(183Z^{-1/3} \right) - f\left(Z \right) \right] + \frac{\epsilon}{9} \right\}$$

• Radiative energy loss can be found by integrating the cross section times the photon energy over the allowable energy range of the emitted photons.

$$-\left(\frac{dE}{dx}\right)_{rad} = N \int_0^{\nu_0} h\nu \frac{d\sigma}{d\nu} \left(E_0,\nu\right) d\nu$$

Energy Loss Calculation Cont.

• This can be rewritten as:

$$-\left(\frac{dE}{dx}\right)_{rad} = NE_0\Phi_{rad}, \quad where \quad \Phi_{rad} = \frac{1}{E_0}\int h\nu \frac{d\sigma}{d\nu} \left(E_0,\nu\right)d\nu$$

• In the case of complete screening we have:

$$\Phi_{rad} = 4Z^2 r_e^2 \alpha \left[ln \left(183Z^{-1/3} \right) + \frac{1}{18} - f \left(Z \right) \right]$$

• Here f(Z) is a Coulomb correction with a=Z/137:

$$f(Z) = a^2 \left[\left(1 + a^2 \right)^{-1} + 0.20206 - 0.0369a^2 + 0.0083a^4 - 0.002a^6 \right]$$

Calculation Check

- Plot (1/p)(dE/dx) from Bremsstrahlung for Cu.
 - Good agreement (low energy has no screening).

Results

- Proposed materials for sieve plate are Al and W.
- Φ_{rad} depends only on material.
- Must also multiply dE/dx by material thickness (length*density).

Parameter	Al	W
Atomic Number Z	13	74
Atomic Mass A, [amu]	26.98	183.84
Density ρ , $[g/cm^3]$	2.70	19.25
Number Density N, $\left[\frac{atoms}{cm^3}\right]$	$6.026 * 10^{22}$	$6.306 * 10^{22}$
Calculated $X_0 [g/cm^2]$	26.01	6.78
PDG $X_0 \ [g/cm^2]$	24.01	6.76
Calculated Radiation Length [cm]	9.633	0.3522
PDG Radiation Length [cm]	8.897	0.3504

Energy Loss of Al and W dE/dx

Energy Loss Radiation Length Al and W

- Collisional losses dominate as energy is lost.
- 1 radiation length leave 1/e energy.

Energy Lost by e- Passing Through Aluminum (PDG Radiation Length = 8.897 cm)

Energy Lost by e- Passing Through Tungsten (PDG Radiation Length = 0.3504 cm)

Conclusion/Future Work

- As expected tungsten depletes the electrons of energy faster than aluminum.
- Current proposal calls for a 0.5 cm thick tungsten plate which seems reasonable.
- Need to determine standard stock thicknesses to minimize machining costs.
- Need to determine plate size for current holder.

References

- Alcorn, J et al. (2004). Basic Instrumentation for Hall A at Jefferson Lab. Nuclear Instruments and Methods A522: 294-346.
- Groom, Don. "Atomic and Nuclear Properties of Materials for More than 300 Materials." AtomicNuclearProperties. Particle Data Group, 23 Sept. 2016. Web. 20 Apr. 2017.
 http://pdg.lbl.gov/2016/AtomicNuclearProperties/.
- Leo, William R. "2.4 Energy Loss of Electrons and Positrons." Techniques for Nuclear and Particle Physics Experiments: A How-to Approach. 2nd ed. Berlin: Springer, 1992. N. pag. Print.
- L S Myers, D. W. Higinbotham, J. R. Arrington. (Aug. 22, 2014). E12-14-009: Ratio of the electric form factor in the mirror nuclei ³He and ³H http://arxiv.org/pdf/1408.5283.pdf