Fitting the $K^+\Sigma^-$ photoproduction within an Isobar model using a novel approach.

Dimitrios Petrellis

Nuclear Physics Institute, Czech Academy of Sciences

Motivation

- Why KΣ photoproduction?
 - Quark models predict more resonances than observed in π-N scattering experiments ("missing" resonance problem).
 Indications that these states may be found in KY (Y = Λ, Σ) channels
 - E/M interaction very well understood
 - Studied at several facilities: CEBAF, MAMI, ELSA, Spring-8, GRAAL
 - New data on photon beam asymmetries from CLAS
- Isobar model: phenomenological models useful in bridging the gap between fundamental theory and experiment

Motivation

- No one single resonance dominates in $E^{lab}{}_{\gamma}\approx$ 1-2 GeV, but many (>20), broad and overlapping
 - extremely large number of possible combinations (models)
 - large number of parameters \rightarrow ordinary χ^2 fitting: problematic similar minima, large *variations* in the parameter values
 - Regularized χ^2 fitting \rightarrow penalty term constrains the number and magnitude of the parameters
 - improves the quality of the fits
 - selects the best subset of parameters → resonances evaluated as most "necessary" by the data → model

Ordinary Least Squares fitting

- set of data: pairs observations
- $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- e.g. x = E, $y = d\sigma/d\Omega$
- Function: f(x, w)

- Parameters: $\boldsymbol{w} = (w_0, w_1, \dots, w_K)$
- Goal: determine values of the parameters **w*** that minimize some error function

$$E = \sum_{i=1}^{N} \left[y_{i} - f(x_{i}, \boldsymbol{w}) \right]^{2} \qquad \chi^{2} = \sum_{i=1}^{N} \left[\frac{y_{i} - f(x_{i}, \boldsymbol{w})}{\sigma_{i}} \right]^{2}$$

[...this, however, is problematic as we may overfit the data]

The problem of overfitting though an example

1

0

-1

1

0

-1

0

 $y = \sin(x) + \epsilon$

fit the data with a polynomial

$$f(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_K x^K$$

increasing order K of polynomial

- fits the data very well, but
- poor description of the function that generated them

Where to stop? What is the optimal complexity of our model? Error minimization alone, does not guarantee the quality of the fitting

Law of parsimony

5

0

0

Regularization: a remedy for over-fitting

- introduction in χ^2 of a term that penalizes large values of the parameters w_j
- ~ minimize χ^2 , subject to constraint:

$$\sum_{j=1}^{K} |w_j|^q \leq \eta$$

 $\mathbf{w}^* = \text{optimum value for } \mathbf{w} \text{ under the constraint}$

• for q = 1 (LASSO) \rightarrow some parameters become zero (w^{*}₁= 0)

LASSO for variable selection

- LASSO forces some of the parameters to zero \rightarrow selects a subset
- λ , regularization parameter \rightarrow strength of the penalty term
- λ : controls how many parameters are switched-off and how many remain (λ practically selects a model)
- try several λ_1 , λ_2 ,... values and choose the optimal λ based on:

either

Validation

or

- Information criteria
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)

Validation: Training & Test set errors

- Fit model on the training set \rightarrow Training Error
- Test the fitted model on the test set \rightarrow Test Error
- Repeat while increasing complexity (Forward selection)

Bias-Variance trade-off

Information Criteria (IC)

Approach equivalent to validation

For a series of models i = 1, 2, ...m

Akaike IC: $AIC = \chi^2_{min} + 2k_i$

 k_i : number of parameters corresponding to model i

N : number of data points

Choose the model with the minimum AIC, BIC

Bayesian IC: BIC = $\chi^2_{\min} + k_i \ln(N)$

[both AIC and BIC give similar results, although BIC tends to penalize complexity more]

In the case of LASSO: model $i \rightarrow \lambda_i \implies$ Choose λ_i that results in the minimum IC

Parameters and observables

			Mass	Width
	Tag	Resonance	(MeV)	(MeV)
Resonances	K*	<i>K</i> *(892)	891.7	50.8
masses, widths: from PDG	K1	$K_1(1270)$	1270	90
Parameters	N3	N(1535) 1/2-	1530	150
coupling constants	N4	$N(1650) \ 1/2^{-}$	1650	125
hadron form factor cutoffs	N8	$N(1675) 5/2^{-}$	1675	145
	N6	$N(1710) \ 1/2^+$	1710	140
674 data points from: CLAS, LEPS	N7	$N(1720) \ 3/2^+$	1720	250
	P4	N(1875) 3/2 ⁻	1875	200
Observables	P1	$N(1880) \ 1/2^+$	1880	300
differential cross sections	Mx	N(1895) 1/2-	1895	120
photon beam asymmetries	P2	$N(1900) \ 3/2^+$	1920	200
	M4	$N(2060) 5/2^{-}$	2100	400
	M1	$N(2120) \ 3/2^{-}$	2120	300
	D1	$\Delta(1900) \ 1/2^{-}$	1860	250

Minimization with: MINUIT Library

Isobar code available at:

http://www.ujf.cas.cz/en/departments/department-of-theoretical-physics/isobar-model.html

10

Applying the Information Criteria

- with random values and use some λ_{max}
- perform LASSO χ^2 minimization and compute AIC, BIC
- in each run progressively decrease λ and rerun LASSO using the fitted parameter values of the last run as starting values
- repeat until λ_{min} is reached
- optimal $\boldsymbol{\lambda}$ occurs at the minimum of BIC, AIC

Reduction in the number of parameters

		Mass	Width	Branch	ning ratio	Fit M		Fit L	
Tag	Resonance	(MeV)	(MeV)	$K\Lambda$	KΣ	<i>g</i> ₁	g_2	g_1	<i>g</i> ₂
K*	<i>K</i> *(892)	891.7	50.8			0.366 ± 0.024	1.103 ± 0.198	0.310 ± 0.019	
K1	$K_1(1270)$	1270	90			-1.448 ± 0.189	0.473 ± 0.156		
N3	N(1535) 1/2-	1530	150			-0.709 ± 0.071			
N4	N(1650) 1/2 ⁻	1650	125	0.07	0.00	0.314 ± 0.034		-0.085 ± 0.006	
N8	$N(1675) 5/2^{-}$	1675	145			-0.013 ± 0.001	0.022 ± 0.003	-0.010 ± 0.001	0.003 ± 0.002
N6	$N(1710) 1/2^+$	1710	140	0.15	0.01	-0.940 ± 0.093			
N7	N(1720) 3/2 ⁺	1720	250	0.05	0.00	-0.098 ± 0.017	-0.082 ± 0.002	-0.187 ± 0.004	-0.126 ± 0.002
P4	N(1875) 3/2 ⁻	1875	200	0.01	0.01	-0.220 ± 0.023	-0.223 ± 0.023	-0.042 ± 0.015	0.025 ± 0.013
P1	$N(1880) 1/2^+$	1880	300	0.16	0.14	-0.050 ± 0.064			
Mx	N(1895) 1/2 ⁻	1895	120	0.18	0.13	-0.063 ± 0.005		0.019 ± 0.002	
P2	$N(1900) \ 3/2^+$	1920	200	0.11	0.05	-0.051 ± 0.005	-0.004 ± 0.001	0.027 ± 0.003	0.010 ± 0.001
M4	$N(2060) 5/2^{-}$	2100	400	0.01	0.03	-0.00001 ± 0.0001	0.003 ± 0.0003	-0.003 ± 0.0001	0.004 ± 0.0002
M1	N(2120) 3/2 ⁻	2120	300			-0.034 ± 0.014	-0.010 ± 0.013	0.0003 ± 0.001	0.0 ± 0.0001
D1	$\Delta(1900) \ 1/2^{-}$	1860	250		0.01	0.298 ± 0.028			
D2	$\Delta(1930) 5/2^{-}$	1880	300						
D3	$\Delta(1920) \ 3/2^+$	1900	300				М	1	
D4	$\Delta(1940) 5/2^{-}$	1950	400				full fit	LASSO fit	
S 1	$\Sigma(1660) \ 1/2^+$	1660	100				i an inc	2/10000 111	
S2	$\Sigma(1750) \ 1/2^{-}$	1750	90						
S 3	$\Sigma(1670) \ 3/2^{-}$	1670	60			no. of	14	9	
S4	$\Sigma(2010) \ 3/2^{-}$	1940	220			resonances			
						no. of parameters	25	17	

Results: differential cross sections

 $\theta_{\kappa}^{c.m.}$: Kaon center-of-mass angle

fit M: MINUIT fit L: MINUIT + LASSO

E^{lab}_γ: incident photon energy

Results: differential cross sections

M: MINUIT fit M fits w/o N3 = N (1535) 1/2 -D1 = Δ (1900) 1/2 -N7 = N (1720) 3/2 +

L: MINUIT + LASSO L fits w/o N7 = N (1720) 3/2 + M4 = N (2060) 5/2 -K * (892)

Photon beam asymmetry Σ

15

Photon beam asymmetry Σ

L: MINUIT + LASSO L fits w/o N7 = N (1720) 3/2 + M4 = N (2060) 5/2 -K * (892)

- In modeling K⁺Σ⁻ photoproduction with an Isobar model the large number of parameters makes the fitting to data problematic.
- Using regularized least squares (LASSO) we are able to reduce the number of parameters needed to describe the data.
- The combination of the LASSO method with information criteria provides a method to choose the best subset of parameters (model).
- Future plan: fit simultaneously all 4 channels of K Σ photoproduction \rightarrow relate coupling constants by SU(2) (Isospin) symmetry

Bibliographic references

• P. Bydzovsky, A. Cieply, D. Petrellis, D. Skoupil and N. Zachariou, Model selection for K⁺Σ⁻ photoproduction within an isobar model, Phys. Rev. C 104, 065202 (2021).

• N. Zachariou et al., Beam-spin asymmetry Σ for Σ^{-} hyperon photoproduction off the neutron, Phys. Lett. B 827, 136985 (2022).

 D. Skoupil and P. Bydžovský, Photo- and electroproduction of K⁺ with a unitarity-restored isobar model, Phys. Rev. C 97, 025202 (2018).

• D. Skoupil and P. Bydžovský, Photoproduction of KA on the proton, Phys. Rev. C 93, 025204 (2016).

• H. Akaike, A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6): 716– 723 (1974).

- C. M. Bishop, Pattern Recognition and Machine Learning. Springer (2006).
- J. Landay M. Döring, C. Fernández-Ramírez, B. Hu and R. Molina, Model selection for pion photoproduction,

Phys. Rev. C 95, 015203 (2017).

• J. Landay, M. Mai, M. Döring, H. Haberzettl and K. Nakayama, Towards the minimal spectrum of excited baryons. Phys. Rev. D 99, 016001 (2019).

• G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6(2), 461-464 (1978).