JLab hypernuclear collaboration meeting 2021

Experimental setup

Tohoku University Sho Nagao

2021/12/07

Contents

Introduction

- Characteristics of the (e,e'K⁺) reaction
- SPL magnet in the last Hall-C experiment

New Separator PCS Magnets

- Specification
- Field distribution
- Shipping Schedule

Experimental Setups

- SPL + HES + HKS
- PCS + HES + HKS
- PCS + SHMS + HKS

Setup Plans

The (e,e'K⁺) experiment requires two magnetic spectrometers.

Additional magnets getting the forward acceptance are necessary for higher hypernuclear yield.

	e'		K+		Viold	BC	Res.	Z _t	Cost
	Fw. Magnet	Spec. Magnet	Fw. Magnet	Spec. Magnet	neiu	D.G.	(MeV)	(cm)	CUSI
#0	SPL	HES	SPL	HKS	Н	Η	0.5	×	L
#1	SPL	HES (V mode)	SPL	HKS	М	Н	~ 0.5	2	Н
#2	PCS(e')	HES (V mode)	PCS(K)	HKS	М	L	~ 0.5	2	Н
#3		SHMS	PCS(K)	HKS	L	L	1	<1	L

The (e,e'K⁺) reaction

Setting $\theta_{ee'}$ with reasonably (several degrees) forward angles is important.

What we learn in the past experiment

HES set θ_{ee'} ~ 4° with a tilted method in E05-115. → background suppression of 1/200.
Low energy and forward e⁺ was a large background source in HKS.
~60% of HKS track was come from the background source in med-heavy target.

SPL magnet provides high hypernuclear yield, but it's not optimum....

Particle Charge Separator (PCS)

		PCS(K)	PCS(e)	
Weight	7.8 t	8.0 t		
Max. Field	1.3 T			
Main Coil	Geometry	16×16/Φ10		
	Turns	96 / coil		
	Current	1700 A		
	Voltage	106 V $_{/eachmag}$		
	Δt	20°C		
Corr. Coil	Geometry	14×9/10×5		
	Turns	88 / coil		
	Current	1000 A		
	Voltage	$97 V_{/each mag.}$		
	Δt	11°C		

Photos

B - I Curve

Magnetic Field v.s Main coil current

p.8/17

Field strength along the track

Field Leakage

- > Field leakage is suppressed with correction coils.
- > Magnetic shielding of the beam pipe and correction magnet is necessary.
- ≻ Integral B·dl along the beamline will be 0.2 (T·m) w/o shield and 0.034 (T·m) w/ shield

Field Leakage

- ➢ Field leakage is suppressed with correction coils.
- > Magnetic shielding of the beam pipe and correction magnet is necessary.
- ≻ Integral B·dl along the beamline will be 0.2 (T·m) w/o shield and 0.034 (T·m) w/ shield

Shipping Schedule

- Shipping is contracted with TOKIN (PCS manufacture company).
- TOKIN organized shipments with NITTSU.
- > PCS will be imported and arrive at JLab on Feb. 2022 with tax exemption.

Kinematical difference between Hall-A and -C

Kinematics of Hall-A and -C

		Hall-A	Hall-C
Beam	E _e	4.23 GeV	2.34 GeV
e'	$\theta(ee'), p_e$	6.5°,2.73 GeV/c	6-10°, 0.84 GeV/c
γ*	$\theta(e\gamma), E_{\gamma}$	11.5°, 1.5 GeV	~4°, 1.5 GeV
K+	θ(γK), p _K	0°, 1.2 GeV/c	~5°, 1.2 GeV/c

- ➤ 1-pass beam would be used.
- > e' momentum would be $2.7 \rightarrow 0.8$ GeV/c.
 - Background (bremsstrahlung) increases.
 - Transverse momentum of VP decreases.
 - More forward angles must cover. (looking $\theta_{VK} = 0^\circ$)
 - Setting with $\theta_{\gamma K} \neq 0^{\circ}$ must be considered.

Setup #1 (SPL + HES + HKS)

Setup #2 (PCS + HES + HKS)

Setup #3 (PCS + SHMS + HKS)

$$\label{eq:G} \begin{split} \mathbb{G} &= 0.8 \times 0.8 \times 0.7 \sim 0.4 \\ \text{Rate(e')} &= 0.2 \; \text{MHz} \, (10 \, \mu\text{A}, 100 \, \text{mg}^{\, 12}\text{C}) \\ &= 2 \; \text{MHz} \, (10 \, \mu\text{A}, 100 \, \text{mg}^{\, 40}\text{Ca}) \\ &= 30 \; \text{MHz} \, (10 \, \mu\text{A}, 100 \, \text{mg}^{\, 208}\text{Pb}) \\ \Delta M &= 1 \; \text{MeV} \, (\text{FWHM}) \end{split}$$

 $& \text{Gain Factor} = \Gamma \times \Delta \Omega_{e'} \times \Delta \Omega_{K} / \text{Hall-A option} \\ p.16/17$

Summary

The (e,e'K⁺) experiments

- > Spectrometer setup of reasonably forward angle is essential for the hypernuclear experiments.
- Background due to SPL in the previous Hall-C experiment.
- > Magnets without acceptance ~0° is important \rightarrow PCS.

<u>PCS</u>

- > Magnetic field is understood with the TOSCA simulation well.
- > Shielding is necessary to suppress the field leakage around the beam line.
- PCS will arrive on Feb. 2022.

<u>Setting</u>

- SPL or PCS for the forward magnets.
- ➢ HES or SHMS for e' spectrometer.

	Gain Factor	e' rate @ ⁴⁰ Ca (MHz)
SPL+HES+HKS	2.8	20
PCS+HES+HKS	0.5	1
PCS+SHMS+HKS	0.4	2