Reaction cross section of ${}^{3}H(\gamma^{*},K^{+})X$

HIEI 2022/3/22

2/17

Introduction

- → ${}^{3}_{\Lambda}$ H (I=0) is the only established state in A = 3 hypernuclear system.
- > HypHI collaboration indicated nn Λ signal at GSI in 2013.

Theoretical calculation for bound state

Almost all calculations have shown that the existence of the bound state is difficult.

Author	Method	YN interaction	Bound	Regards
Downs [12]	variational method	exponential	×	-
Miyagawa [13]	Faddeev	Nijmegen89	×	1.7
Hiyama [14]	variational method NSC97f		×	
Gal [15]	Faddeev	NSC97e,f	×	
Garcilazo [16,17]	Faddeev	CCQM	×	1
Ando [18]	coupled	<i>FET</i>	Δ	Efimov state
	integral equation			
Belyaev [19]	hyperspherical	Minesota	×	V ↑ 50% bound
	harmonics	Wintesota		
Afnan [21]	Faddeev	Yamaguchi etc.	×	$\Lambda n \uparrow 25\%$ bound
Filikhin [22]	Faddeev	NSC97f	×	-
Kamada [23]	Faddeev	Nijmegen89	×	YN ↑ 20% bound

Theoretical calculation for resonant state

- > Many papers have suggested the existence of the resonant state.
- > There are large uncertainties in their binding energies and widths.

Author	Method	YN interaction	Resonance	Regards
Belyaev [19]	hyperspherical harmonics	Minesota	0	-
Afnan [21]	Faddeev	Yamaguchi etc.	×	$\Lambda n \uparrow 5\%$ resonance
Filikhin [22]	Faddeev	NSC97f	\bigcirc	-
Kamada [23]	Faddeev	Nijmegen89	\bigcirc	-
Schäfer [24,25]	IACCC, CSM	NSC97f etc.	\bigcirc	-

K⁻pnn

 $counts/(5MeV/c^2)$

Discovery of a strange tribaryon $S^0(3115)$

HIEI 2022/03/22

Electro-production of hypernuclei at JLab

- $\succ \text{ Changing p to } \Lambda \longrightarrow \text{ nnp target to nn} \Lambda$
- → High resolution primary beam $\longrightarrow \Delta M = 1.5 \text{ MeV}(\sigma)$
- Missing mass method Sensitive to bound/resonance

8/17

Analysis

Geant4 Simulator

> ³H(e,e'K⁺)X reaction

- \triangleright Quasi Free Λ , proton contamination
- > The data and simulation are consistent in the high mass region.
- An final state interaction or on-mass-shell approximation near threshold ³H mass
 H mass

Energy loss at target

> Accidental BG was estimated with mixed event analysis.

HIEI 2022/03/22

- ≻ Theoretical predictions: $(-B_{\Lambda}, \Gamma) = (0.25, 0.8) [1]$ and (0.55, 4.7) MeV [2].
- > No peak structure with a significance exceeding 3σ was found.
- > The bottom show the 90% upper limit. (0.25, 0.8) MeV : 21 nb/sr

- ≻ Theoretical predictions: $(-B_{\Lambda}, \Gamma) = (0.25, 0.8) [1]$ and (0.55, 4.7) MeV [2].
- > No peak structure with a significance exceeding 3σ was found.
- > The bottom show the 90% upper limit. (0.25, 0.8) MeV : 21 nb/sr

- ≻ Theoretical predictions: $(-B_{\Lambda}, \Gamma) = (0.25, 0.8) [1]$ and (0.55, 4.7) MeV [2].
- > No peak structure with a significance exceeding 3σ was found.
- > The bottom show the 90% upper limit. (0.25, 0.8) MeV : 21 nb/sr

- ≻ Theoretical predictions: $(-B_{\Lambda}, \Gamma) = (0.25, 0.8) [1]$ and (0.55, 4.7) MeV [2].
- > No peak structure with a significance exceeding 3σ was found.
- > The bottom show the 90% upper limit. (0.25, 0.8) MeV : 21 nb/sr

> Two-dimensional scans of B_{Λ} and Γ for upper limit were performed.

HIEI 2022/03/22

The cross section for the ³H(e,e'K⁺)X reaction was obtained for the first time.

- ➤ We did not observe the nnA peak reported by the HypHi collaboration.
- ≻ Upper limit were obtained to be 21 nb/sr and 31 nb/sr, when $(-B_{\Lambda},\Gamma) = (0.25, 0.8)$ and (0.55, 4.7) MeV were assumed.
- ➤ This is expected to provide significant information on the nnA existence and An interaction