

Tritium Experiment Readiness Review

charge items 6 and 7

Radiation Budget Estimate and Experiment Safety Documentation

Presented by Douglas Higinbotham

Hall A Safety Documentation

- Using Github to manage Hall A LaTeX Documentation: https://github.com/JeffersonLab/halla-osp
 - COO: Conduct of Operations
 - ESAD: Experimental Safety Assessment Document
 - Hall A Standard Equipment Documentation
- RSAD done in collaboration with Radcon
- ERG Emergency Response Guidelines
 - word document with map from facilities with labeled safety equipment
- OSP's by system owners

COO & ESAD

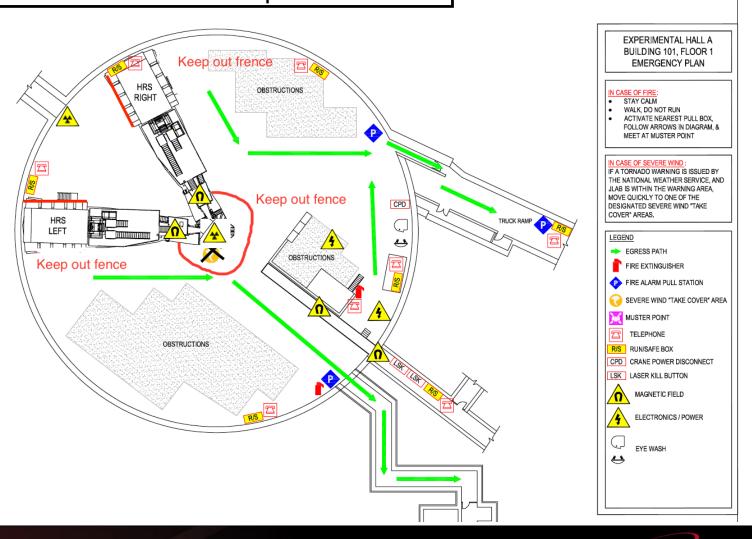
- Working forward from previously approved Hall A COO and ESAD documents (version control maintained with Github)
- Adding information about tritium and new training requirements COO & ESAD
- Adding information about students working in the Hall. This has been missing from experiment COO and added thanks to Ed Folts.

Radiation Budget Estimate

Energy	GeV		2.2	2.2	2.2	2.2	2.2		Energy	GeV		8.8	8.8	8.8	8.8	8.8	
Current	Gev		20.0	20.0	20.0	20.0	20.0		Current	Gev		20.0	20.0	20.0	20.0	20.0	
Element		Be	Be	Be	Be	Be	20.0		Element		Be	Be	Be	Be	Be	20.0	
Thickness	mg/cm2		36.0	36.0	36.0	36.0	36.0		Thickness	mg/cm2		36.0	36.0	36.0	36.0	36.0	
Element	O,	Αl	Al	Al	Al	С			Element	O,	Αl	Al	Al	Al	C		
Thickness	mg/cm2		160.0	160.0	160.0	160.0	100.0		Thickness	mg/cm2		160.0	160.0	160.0	160.0	100.0	
Element	_	Н	D	T	ЗНе				Element	_	Н	D	T	3Не			
Thickness	mg/cm2		50.0	120.0	75.0	75.0			Thickness	mg/cm2		50.0	120.0	75.0	75.0		
Time	days		1.0	6.0	6.0	6.0	1.0		Time	days		1.0	1.0	10.0	10.0	1.0	
estimated	/1		0.2	0.0			0.4		estimated	/1		0.7	4.3	4.0	4.0	0.2	
Dose Rate	urem/hr		0.3	0.0	1.1	1.1	0.1		Dose Rate	urem/hr		0.7	1.2	1.0	1.0	0.2	
estimated dose/setup	urom		8.0	0.0	161.3	161.3	3.2	333.8 urem total	estimated dose/setup	urom		16.0	28.8	240.0	240.0	4.2	529.0 urem total
dose/setup	urem		8.0	0.0	101.3	101.3	3.2	555.8 urem total	dose/setup	urem		16.0	28.8	240.0	240.0	4.2	529.0 urem total
Energy	GeV		4.4	4.4	4.4	4.4	4.4		Energy	GeV		11.0	11.0	11.0	11.0	11.0	
Current			20.0	20.0	20.0	20.0	20.0		Current			20.0	20.0	20.0	20.0	20.0	
Element		Be	Be	Be	Be	Be			Element		Be	Be	Be	Be	Be		
Thickness	mg/cm2		36.0	36.0	36.0	36.0	36.0		Thickness	mg/cm2		36.0	36.0	36.0	36.0	36.0	
Element		Αl	Al	Al	Al	С			Element		Al	Al	Al	Al	C		
Thickness	mg/cm2		160.0	160.0	160.0	160.0	100.0		Thickness	mg/cm2		160.0	160.0	160.0	160.0	100.0	
Element	/ 2	Н	D	T	3He	75.0			Element	/ 2	Н	D	T	3He	75.0		
Thickness	mg/cm2		50.0	120.0	75.0	75.0			Thickness	mg/cm2		50.0	120.0	75.0	75.0		
Time	days		1.0	8.0	20.0	20.0	1.0		Time	days		1.0	1.0	28.0	28.0	1.0	
estimated									estimated								
Dose Rate	urem/hr		0.7	1.2	1.0	1.0	0.2		Dose Rate	urem/hr		0.7	1.2	1.0	1.0	0.2	
estimated									estimated								
dose/setup	urem		16.0	230.4	480.0	480.0	3.8	1210.2 urem total	dose/setup	urem		16.0	28.8	672.0	672.0	4.2	1393.0 urem total
			Total Days:			l Days:	152.0 d	ays	Total Estima	Total Estimated Dose 3465.9 ui			n				

The thickness single material in the beam is the Al walls of the target (160 mg/cm²)

Assuming 100% running, the maximum tritium runs could use is ~35% of annual dose budget. (nominal running efficiency is ~50% so likely dose will be < 18%)


This is a lower luminosity experiment then the currently running DVCS experiments.

Emergency Response Guideline

DRAFT Hall A ERG Map For Tritium

FOR HALL WORKER
AWARENESS TRAINING ONLY

Tritium Operational Safety Procedures

- Details of tritium target will be covered in the version controlled tritium target Operation Safety Procedure.
- Everyone working in Hall A will be required to review this OSP and take Tritium I training.
- CANS system will be used to ensure people have been trained (Note: historically Hall A used the CANS system to control the hall during laser work)
- Following the example of Radworker I vs. Radworker II, a
 Tritium II training will be used to train workers who will need
 to work with and/or near the tritium target.

Hall A Walk-through

- As part of the standard Hall A training, employees, scientific users, contractors, etc. are given an extensive tour of Hall A as part of SAF110.
- Based on discussion with Dave & Thia, workers with the SAF110 training could do the tritium walkthrough as a virtual tour instead of another physical tour. (please advise)
- Full physical tours would of course still be required for new workers to acquire SAF110.

Summary & To Do List

- Draft COO and ESAD Circulating
 - Added Tritium Information & Training Requirements
 - Added Information about students in the hall from Ed Folts
 - Assumed all shift workers should be fully Tritium I trained
- Working on updating ERG
 - Updating Map with Tritium Target & Fences
 - Adding Information about Tritium Alarms & Contacts
- Working with Radcon to finalize RSAD documentation
- New OSP Document & New Training In Progress
 - Tritium Target Operational Safety Procedure
 - Tritium I (general) and Tritium II (specialized) training