Study of hypernuclear Charge Symmetry Breaking effects using #EFT

Martin Schäfer

Nuclear Physics Institute of the Czech Academy of Sciences,

Řež, Czech Republic

Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics 2024

15th of October 2024

Charge symmetry breaking

Charge independence :

Invariance under any rotation in isospin space.

 \rightarrow Charge Independence Breaking (CIB)

Charge symmetry :

Invariance under a rotation by 180° about y axis in isospin space if the positive z direction is associated with the positive charge.

\rightarrow Charge Symmetry Breaking (CSB)

Nuclear charge symmetry breaking

(Phys. Rev. C 63 (2001) 034005)

NN interaction, I = 1 :

• ${}^{1}S_{0}$ scattering lengths (corrected for e.m. effects)

$$\begin{split} I_z &= 1 &: a_{pp}^0 = -17.3 \pm 0.4 \text{ fm} \\ I_z &= 0 &: a_{pn}^0 = -23.71 \pm 0.03 \text{ fm} \\ I_z &= -1 &: a_{pn}^0 = -18.95 \pm 0.4 \text{ fm} \end{split}$$

Three-body, I = 1/2 :

•
$$B(^{3}\text{H}; I_{z} = -1/2) - B(^{3}\text{He}; I_{z} = 1/2) = 764 \text{ keV}$$

 \rightarrow CSB in $^{3}\mathrm{H}$ and $^{3}\mathrm{He}$ nuclei $\Delta^{\mathrm{CSB}}_{^{3}\mathrm{H}-^{3}\mathrm{He}}=68\pm9$ keV

Current understanding :

• difference between the up and down quark masses and electromagnetic interaction among the quarks

 \rightarrow difference between hadrons of the same isospin multiplet

 \rightarrow meson mixing ($\rho^0 - \omega$)

A-hypernuclear charge symmetry breaking

(AIP Conf. Proc. 2130 (2019) 030003)

- ΛN interaction, I = 1/2 :
 - S = 0, S = 1 scattering lengths

$I_z =$	1/2	:	Λp	$a^0_{\Lambda p}, a^1_{\Lambda p}$?
$I_z =$	-1/2	:	Λn	$a^0_{\Lambda n}, a^1_{\Lambda n}$?

• on the two-body level mostly Λp experimental information

Hypernuclear CSB (here given only up to A = 8) :

- ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He (I = 1/2)$
- ${}^{7}_{\Lambda}$ He ${}^{7}_{\Lambda}$ Li*- ${}^{7}_{\Lambda}$ Be (I = 1)
- ⁸_ΛLi ⁸_ΛBe (I = 1/2)

Why is hypernuclear CSB interesting ?

- underlying mechanism
- neutron-rich hypernuclei Λnn , $\Lambda\Lambda n$, $\Lambda\Lambda nn$, ${}_{\Lambda}^{6}$ H, ${}_{\Lambda}^{6}$ He, ${}_{\Lambda}^{7}$ He, ${}_{\Lambda}^{8}$ He, ${}_{\Lambda}^{9}$ He

Charge symmetry breaking in $^4_{\Lambda}{\rm H}/^4_{\Lambda}{\rm He}$

Sizable CSB splitting in 0^+ ground states, while small in 1^+ excited states.

STAR collaboration (Phys. Lett. B 834 (2022) 137449):

$$\Delta B_{\Lambda}(0^+_{
m g.s.}) = -\Delta B_{\Lambda}(1^+_{
m exc.}) = 160 \pm 140({
m stat}) \pm 100({
m syst})$$
 keV

Introduction

DvH mechanism (R. H. Dalitz and F. von Hippel, Phys. Lett. 10 (1964) 153)

- e.m. mass splitting in the baryon multiplet
- appreciable mixing between the isospin-pure Σ^0 and Λ states

$$\begin{split} \Lambda_{\mathsf{phys}} &= ~\Lambda~ \mathsf{cos}(\alpha) + \Sigma^0~\mathsf{sin}(\alpha) \\ \Sigma^0_{\mathsf{phys}} &= -\Lambda~\mathsf{sin}(\alpha) + \Sigma^0~\mathsf{cos}(\alpha) \end{split}$$

I = 1 isospin admixture amplitude :

$$\mathcal{A}_{I=1}^{(0)} = an(lpha) = -rac{\left\langle \Sigma^{0} \right| \delta M \left| \Lambda \right\rangle}{M_{\Sigma^{0}} - M_{\Lambda}} = -0.0148(6)$$

$$<\Sigma^{0}|\delta M|\Lambda>=\left[m_{\Sigma^{0}}-m_{\Sigma^{+}}+m_{p}-m_{n}
ight]/\sqrt{3}$$

→ CSB one-pion-exchange $g_{\Lambda\Lambda\pi} = 2\mathcal{A}_{I=1}^{(0)}g_{\Lambda\Sigma\pi}$ (opposite contribution for Λp and Λn)

Introduction

Theoretical works - DvH mechanism

• **R. H. Dalitz and F. von Hippel** (Phys. Lett. 10 (1964) 153) \rightarrow CSB OPE contribution by allowing $\Lambda - \Sigma^0$ mixing in SU(3)_f

$$g_{\Lambda\Lambda\pi} = 2\mathcal{A}_{I=1}^{(0)}g_{\Lambda\Sigma\pi}; \quad \mathcal{A}_{I=1}^{(0)} = -\frac{\left\langle \Sigma^{0} \right| \delta M \left| \Lambda \right\rangle}{M_{\Sigma^{0}} - M_{\Lambda}} = -0.0148(6)$$

 $\to \Delta B_{\Lambda}(0^+_{\rm g.s.}) \approx 210\pm50$ keV (back then ${\cal A}^{(0)}_{l=1}=-0.019\pm0.006)$

• **A. Gal** (Phys. Let. B 744 (2015) 352) \rightarrow generalization of DvH $\langle N\Lambda | V_{\Lambda N}^{CSB} | N\Lambda \rangle = -\frac{2}{\sqrt{3}} \mathcal{A}_{l=1}^{(0)} \tau_{N_z} \langle N\Lambda | V | N\Sigma \rangle$ $\rightarrow \Delta B_{\Lambda}(0^+_{\text{g.s.}}) \approx 240 \text{ keV} \qquad \Delta B_{\Lambda}(1^+_{\text{exc.}}) \approx 35 \text{ keV}$

• D. Gazda and A. Gal

(Phys. Rev. Lett. 116 (2016) 122501; Nucl. Phys. A 954 (2016) 161)

 \rightarrow generalized DvH; LO $\chi {\rm EFT}$ YN interaction; NSCM

 $ightarrow \Delta B_{\Lambda}(0^+_{
m g.s.}) pprox 180 \pm 130 \ {
m keV} \qquad \Delta B_{\Lambda}(1^+_{
m exc.}) pprox -200 \pm 30 \ {
m keV}$

Theoretical works - χEFT J. Haidenbauer et al., Few-Body Syst. 62 (2021) 105

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to $\Lambda - \Sigma^0$ mixing (left two diagrams) and $\pi^0 - \eta$ mixing (right diagram).

Fig. 2 CSB contributions from K^{\pm}/K^0 exchange (left) and from contact terms (right).

Contact terms fitted to experimental CSB in $^4_{\Lambda}$ He and $^4_{\Lambda}$ H. $\Delta B_{\Lambda}(0^+_{\rm g.s.}) = 233 \pm 92 \text{ keV} \qquad \Delta B_{\Lambda}(1^+_{\rm exc.}) = -83 \pm 94 \text{ keV}$

Theoretical works - χEFT J. Haidenbauer et al., Few-Body Syst. 62 (2021) 105

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to $\Lambda - \Sigma^0$ mixing (left two diagrams) and $\pi^0 - \eta$ mixing (right diagram).

Fig. 2 CSB contributions from K^{\pm}/K^0 exchange (left) and from contact terms (right).

Contact terms fitted to experimental CSB in $^{4}_{\Lambda}$ He and $^{4}_{\Lambda}$ H. $\Delta B_{\Lambda}(0^{+}_{g.s.}) = 233 \pm 92 \text{ keV} \qquad \Delta B_{\Lambda}(1^{+}_{exc.}) = -83 \pm 94 \text{ keV}$

Theoretical works - χEFT J. Haidenbauer et al., Few-Body Syst. 62 (2021) 105

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to $\Lambda - \Sigma^0$ mixing (left two diagrams) and $\pi^0 - \eta$ mixing (right diagram).

Fig. 2 CSB contributions from K^{\pm}/K^0 exchange (left) and from contact terms (right)

Contact terms fitted to experimental CSB in $^{4}_{\Lambda}$ He and $^{4}_{\Lambda}$ H. $\Delta B_{\Lambda}(0^{+}_{e.s.}) = 233 \pm 92 \text{ keV} \qquad \Delta B_{\Lambda}(1^{+}_{exc.}) = -83 \pm 94 \text{ keV}$

Theoretical works - χEFT J. Haidenbauer et al., Few-Body Syst. 62 (2021) 105

Table 2 Comparison of different CSB scenarios, based on the YN interactions NLO13 and NLO19 with cutoff $\Lambda = 600$ MeV

	a_s^{Ap}	a_t^{Ap}	$a_s^{\Lambda n}$	$a_t^{\Lambda n}$	$\chi^2(\Lambda p)$	$\chi^2(\Sigma N)$	χ^2 (total)	$\Delta E(0^+)$	$\Delta E(1^+)$
NLO13	- 2.906	- 1.541	- 2.907	- 1.517	4.47	12.34	16.81	58	24
CSB-OBE	-2.881	-1.547	-2.933	-1.513	4.39	12.43	16.83	57	20
CSB1	-2.588	-1.573	-3.291	-1.487	3.43	12.38	15.81	256	- 53
CSB2	- 3.983	-1.281	-2.814	-0.948	4.51	12.31	16.82	299	161
CSB3	-2.792	- 1.666	-3.027	-1.407	9.52	12.41	21.93	370	56
NLO19	-2.906	-1.423	-2.907	-1.409	3.58	12.70	16.28	34	10
CSB-OBE	-2.877	-1.415	-2.937	-1.419	3.30	13.01	16.31	- 6	- 7
CSB1	-2.632	- 1.473	-3.227	-1.362	3.45	12.68	16.13	243	- 67
CSB2	- 3.618	-1.339	-3.013	-1.117	4.02	12.09	16.12	218	129
CSB3	-2.758	-1.546	- 3.066	-1.300	7.49	12.64	20.14	359	45

Results are shown for the original NLO interactions, with addition of OBE contribution to CSB, and for the scenarios CSB1, CSB2, CSB3 with added CSB contact terms, CSB1 corresponds to the present experimental status. Note that the χ^2 for the NLO interactions differences between Ap and An have not been taken into account. Small deviations of the CSB from values of the three scenarios are due to using perturbation theory for fitting and using a smaller number of partial waves for fitting

Introduction

Theoretical works - χEFT H. Le et al., Phys. Rev. C 107 (2023) 024002

TABLE IV. Contributions to CSB in the A = 7 and 8 isospin multiplets, based on the YN potentials NLO13(500) and NLO19(500) (including 3N forces and SRG-induced YNN interactions). The results are for the original potentials (without CSB force) and for the scenario CSB1, see text. Results by Gal [37] and by Hiyama *et al.* [13] are included for the ease of comparison. All energies are in keV. The estimated uncertainties for A = 7 and 8 systems are 30 and 50 keV, respectively.

		ΔT	ΔV_{NN}	ΔV_{YN}			
				${}^{1}S_{0}$	${}^{3}S_{1}$	Total	ΔB_{Λ}
	NLO13 NLO13-CSB	7 8	-24 -24	-1 -49	0 26	0 -24	-17 -40
$^7_{\Lambda}$ Be - $^7_{\Lambda}$ Li*	NLO19 NLO19-CSB	6 6	$-40 \\ -41$	$^{-1}_{-43}$	0 42	0 9	-34 -35
	Hiyama [13] Gal [37]	3	-70 -70			200 50	150 -17
	Experiment [6]						-100 ± 90
${}^7_{\Lambda}$ Li* - ${}^7_{\Lambda}$ He	NLO13 NLO13-CSB	8 7	-13 -14	0 -49	0 26	0 -24	-5 -31
	NLO19 NLO19-CSB	5 5	$-22 \\ -21$	-43 -38	42 37	0 -1	-17 - 16
	Hiyama [13] Gal [38]	2	$-80 \\ -80$			200 50	130 -28
	Experiment [6]						$-20 \pm 230^{\circ}$ $-50 \pm 190^{\circ}$
	NLO13 NLO13-CSB	12 12	8 7	-2 100	0 56	-4 159	16 178
${}^8_{\Lambda}$ Be - ${}^8_{\Lambda}$ Li	NLO19 NLO19-CSB	7 6	$-11 \\ -11$	-1 62	0 79	-2 147	-6 143
	Hiyama [13] Gal [37] Experiment [4]	11	40 81			119	$160 \\ 49 \\ 40 \pm 60$

^aThe difference between $B_A(_A^7L^4)$ and $B_A(_A^7He)$ is -20 ± 230 keV for the FINUDA and JLab results, but -50 ± 190 keV when the revised SKS and JLab results are used [6].

Hypernuclear CSB within #EFT (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

Charge Symmetric (CS) LO #EFT

Nuclear :

Hypernuclear :

$$\begin{split} V_{NN} &= \sum_{S} C_{NN}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4} r_{12}^{2}} & V_{\Lambda N} = \sum_{S} C_{\Lambda N}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4} r_{12}^{2}} \\ V_{NNN} &= D_{\lambda}^{1/2} \frac{1/2}{2} \frac{1/2}{2} \frac{1/2}{2} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4} (r_{12}^{2} + r_{23}^{2})} & V_{\Lambda NN} = \sum_{IS} D_{\Lambda NN}^{IS}(\lambda) \mathcal{Q}^{IS} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4} (r_{12}^{2} + r_{23}^{2})} \end{split}$$

Fitted to explicit CS input :

$$\begin{array}{l} \rightarrow \ B(^{2}\mathrm{H}) \\ \rightarrow \ a^{0}_{nn/pp} = -18.13 \ \mathrm{fm} \\ \rightarrow \ \mathrm{several \ sets \ of} \ (a^{0}_{\Lambda N}; \ a^{1}_{\Lambda N}) \end{array}$$

- $\rightarrow B_{\Lambda}(^{3}_{\Lambda}H)$
- ightarrow CS average ${\it B}(^{3}{
 m H}/^{3}{
 m He})$
- \rightarrow CS average $B_{\Lambda}(^4_{\Lambda} H/^4_{\Lambda} He)$

Hypernuclear CSB within #EFT (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

Charge Symmetric (CS) LO #EFT

Nuclear :

Hypernuclear :

$$\begin{split} V_{NN} &= \sum_{S} C_{NN}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4} r_{12}^{2}} & V_{\Lambda N} = \sum_{S} C_{\Lambda N}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4} r_{12}^{2}} \\ V_{NNN} &= D_{\lambda}^{1/2} \frac{1/2}{2} \mathcal{Q}^{1/2} \frac{1/2}{2} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4} (r_{12}^{2} + r_{23}^{2})} & V_{\Lambda NN} = \sum_{IS} D_{\Lambda NN}^{IS}(\lambda) \mathcal{Q}^{IS} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4} (r_{12}^{2} + r_{23}^{2})} \end{split}$$

CSB in NN interaction (spin singlet)

$$C_{NN}^{S=0}\mathcal{P}^{S=0} \to (C_{pp}^{S=0}\mathcal{P}^{pp} + C_{pn}^{S=0}\mathcal{P}^{pn} + C_{nn}^{S=0}\mathcal{P}^{nn})\mathcal{P}^{S=0}$$

$$C_{NN}^{S=0} = \frac{1}{2} (C_{\rho\rho}^{S=0} + C_{nn}^{S=0}), \quad \delta C_{NN}^{S=0} = \frac{1}{2} (C_{\rho\rho}^{S=0} - C_{nn}^{S=0})$$

Nuclear CSB within #EFT (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

 $\delta C_{NN}^{S=0}(\lambda)$ -20 Fit to $\Delta^{CSB}_{^{3}\mathrm{H}-^{3}\mathrm{He}}=68\pm9$ keV -19 CSB + DWBA-18 $(a_{nn/nn}^0 = -18.13 \pm 0.3 \text{ fm})$ ي آ ھ –17 a_{nn}^0 and a_{nn}^0 scattering lengths -16 1 -15 ---- $a_0^{pp, exp} = -17.3 \pm 0.4 \text{ fm}$ $a_0^{pp} (\Delta_{^{3}H-^{3}He}^{^{CSB}} = 68 \pm 9 \text{ keV})$ ---- $a_0^{nn, exp} = -18.95 \pm 0.4 \text{ fm}$ ---- $a_0^{nn} (\Delta_{3H-3He}^{CSB} = 68 \pm 9 \text{ keV})$ $a_{nn}^0 = -18.95 \pm 0.4$ fm ---- $a_0^{NN} = -18.13 \pm 0.3$ fm $a_{nn}^{0} = -17.3 \pm 0.4$ fm -14 ż à 6 8 10 0 λ [fm⁻¹]

Hypernuclear CSB within #EFT (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

Charge Symmetric (CS) LO #EFT

Nuclear :

Hypernuclear :

$$V_{NN} = \sum_{S} C_{NN}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4}r_{12}^{2}} \qquad V_{\Lambda N} = \sum_{S} C_{\Lambda N}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4}r_{12}^{2}}$$
$$V_{NNN} = D_{\lambda}^{1/2} \mathcal{Q}^{1/2} \mathcal{Q}^{1/2} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4}(r_{12}^{2} + r_{23}^{2})} \qquad V_{\Lambda NN} = \sum_{IS} D_{\Lambda NN}^{IS}(\lambda) \mathcal{Q}^{IS} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4}(r_{12}^{2} + r_{23}^{2})}$$

CSB in ΛN interaction

$$C^{S}_{\Lambda N} \mathcal{P}^{S} \to (C^{S}_{\Lambda \rho} \frac{1 + \tau_{Nz}}{2} + C^{S}_{\Lambda n} \frac{1 - \tau_{Nz}}{2}) \mathcal{P}^{S}$$
$$C^{S}_{\Lambda N} = \frac{1}{2} (C^{S}_{\Lambda \rho} + C^{S}_{\Lambda n}), \qquad \delta C^{S}_{\Lambda N} = \frac{1}{2} (C^{S}_{\Lambda \rho} - C^{S}_{\Lambda n})$$

Fitting CSB LECs (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

 $\rightarrow \text{ perturbatively}$

 \rightarrow two experimental constraints (^4_hHe and ^4_hH)

$$\Delta B_{\Lambda}(0^+_{
m g.s.}) = 233 \pm 92 \,\, {
m keV} \qquad \Delta B_{\Lambda}(1^+_{
m exc.}) = -83 \pm 94 \,\, {
m keV}$$

System of two linear equation for $\delta C^0_{\Lambda N}$ and $\delta C^1_{\Lambda N}$:

$$2 \ \delta C^0_{\Lambda N} \ \Delta V^0_{\Lambda N; 0^+} + 2 \ \delta C^1_{\Lambda N} \ \Delta V^1_{\Lambda N; 0^+} = \Delta B_{\Lambda}(0^+_{\mathrm{g.s.}})$$
$$2 \ \delta C^0_{\Lambda N} \ \Delta V^0_{\Lambda N; 1^+} + 2 \ \delta C^1_{\Lambda N} \ \Delta V^1_{\Lambda N; 1^+} = \Delta B_{\Lambda}(1^+_{\mathrm{exc.}})$$

where

$$\Delta V^{S}_{\Lambda N; J^{\pi}} = \langle {}^{4}_{\Lambda} \mathrm{H}; J^{\pi} | \tau_{Nz} \mathcal{P}_{S} \delta_{\lambda} (\mathbf{r}_{\Lambda N}) | {}^{4}_{\Lambda} \mathrm{H}; J^{\pi} \rangle$$
CS LO #EFT wave function

Fitting CSB LECs (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

 $|\delta C^1_{\Lambda N}| < |\delta C^0_{\Lambda N}|$; predominantly opposite sign

Λp and Λn scattering lengths (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

 \rightarrow CSB propagated into ΛN scattering length (perturbatively; DWBA)

S = 0: Stronger Λn and weaker Λp interaction S = 1: Hardly affected; mostly stronger Λp and weaker Λn interaction

In-medium A isospin impurity (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

In-medium Λ isospin impurity (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

DvH ansatz :

(A. Gal, Phys. Lett. B 744 (2015) 352)

$$\langle \Lambda N | V_{\rm CSB} | \Lambda N \rangle = -\frac{2}{\sqrt{3}} \mathcal{A}_{I=1}^{(0)} \langle \Sigma N | V_{\rm CS} | \Lambda N \rangle \tau_{Nz}$$

$$\downarrow$$

$$\delta C_{\Lambda N}^{S} = -\frac{2}{\sqrt{3}} \mathcal{A}_{I=1}^{S} C_{\Lambda N;\Sigma N}^{S}$$

SU(3)_f symmetry:

(C.B. Dover, H. Feshbach, Ann. Phys. (NY) 198 (1990) 321)

$$C^{0}_{\Lambda N,\Sigma N} = -3(C^{0}_{\Lambda N} - C^{0}_{\Lambda N}) \\ C^{1}_{\Lambda N,\Sigma N} = (C^{1}_{\Lambda N} - C^{1}_{\Lambda N}) \\ \end{array} \right\} \longrightarrow -\mathcal{A}^{0}_{I=1} = (\sqrt{3}/2)\delta C^{0}_{\Lambda N}/[-3(C^{0}_{\Lambda N} - C^{0}_{\Lambda N})] \\ -\mathcal{A}^{1}_{I=1} = (\sqrt{3}/2)\delta C^{1}_{\Lambda N}/[(C^{1}_{\Lambda N} - C^{1}_{\Lambda N})]$$

In-medium Λ isospin impurity (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

In-medium Λ isospin impurity (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

ightarrow considering more precise $\Delta E_{\gamma}=$ 316 \pm 20 keV

Relation between CSB LECs and ΔE_{γ} :

$$2 \,\delta C^{0}_{\Lambda N} \left[\Delta V^{0}_{\Lambda N; 0^{+}} - \Delta V^{0}_{\Lambda N; 1^{+}} \right] + 2 \,\delta C^{1}_{\Lambda N} \left[\Delta V^{1}_{\Lambda N; 0^{+}} - \Delta V^{1}_{\Lambda N; 1^{+}} \right] = \Delta E_{\gamma}$$

 \rightarrow assuming DvH ansatz, SU(3)_{\it f} symmetry, and ${\cal A}_{\it l=1}^0={\cal A}_{\it l=1}^1$

Relation between I = 1 admixture amplitude and ΔE_{γ} :

$$-\mathcal{A}_{I=1} = \frac{\sqrt{3}}{2} \Delta E_{\gamma} \left(-6(C_{NN}^{0} - C_{\Lambda N}^{0}) [\Delta V_{\Lambda N; 0^{+}}^{0} - \Delta V_{\Lambda N; 1^{+}}^{0}] \right. \\ \left. +2 (C_{NN}^{1} - C_{\Lambda N}^{1}) [\Delta V_{\Lambda N; 0^{+}}^{1} - \Delta V_{\Lambda N; 1^{+}}^{1}] \right)^{-1}$$

In-medium Λ isospin impurity (Schäfer, Barnea, Gal, Phys. Rev. C 106 (2022) L031001)

Method/Input	В	$-\mathcal{A}_{I=1}$
$SU(3)_{f}$ (Phys. Lett 10 (1964) 153)	1	0.0148 ± 0.0006
LQCD (Phys. Rev. D 101 (2020) 034517)	1	0.0168 ± 0.0054
$\#$ EFT (LO)/[χ EFT(LO); $\Lambda \rightarrow \infty$]	4	0.0139 ± 0.0013
\neq EFT (LO)/[χ EFT(NLO); $\Lambda \rightarrow \infty$]	4	0.0168 ± 0.0014

Summary

- DvH mechanism; EFT-based approach using CSB contact terms
- perturbative inclusion of CSB in LO #EFT (fitted to CSB in ${}^{4}_{\Lambda}H/{}^{4}_{\Lambda}He$)
- microscopic calculations of CSB in A=4, 7, 8 hypernuclei
- Spin-singlet : Stronger Λn and weaker Λp interaction
 Spin-triplet : Hardly affected; mostly stronger Λp and weaker Λn

LO #EFT - assumtion of DvH ansatz and SU(3)_f symmetry

- extraction of in-medium Λ isospin impurity $A_{l=1}$; all cases in agreement with free-space LQCD prediction and in most cases with free-space DvH value
- using $\mathcal{A}_{l=1}^{(0)}$ DvH value the procedure can be applied in reverse thus predicting experimental CSB in ${}_{\Lambda}^{4}H/{}_{\Lambda}^{4}He$