Target Meeting JLab Hypernuclear experiments

Toshiyuki Gogami Graduate School of Science, Kyoto University 2020/12/1

Target that we proposed to use

- Solid targets
- Gas targets (the densities are the same as those for tritium experiments in Hall A)

ANSYS calculation

- Target cell cooled by 15 K He
- Simple models
 - Gas cell (90-mg/cm² Al, I = 50 μ A, no raster)
 - Pb (200-mg/cm² Pb, I = 25 μ A, raster: 1.5 mm × 1.5 mm)

Target for hypernuclear measurements

① C12-20-003 (³H)

2 C12-19-002 (^{3,4}He)

④ E12-20-013 (²⁰⁸Pb)

- 1. <u>Possibility of a combined system of solid targets and cryo-gas targets</u>
 - Mechanical issue
 - Thermal issue
- 2. <u>What are concerns for (cyo)target design ?</u> \rightarrow Any reasonable (empirical) values?
 - Maximum heat removal power (e.g. 6 + 6 = 12 W for AI cell @50 μ A) \leftarrow Total removed amount was 15 W in the case of previous np A experience
 - \leftarrow Total removed amount was 15 W in the case of previous nn Λ experiment.
 - Temperature limits
 - \rightarrow Differential pressure limits
 - Thermal contact coefficient
 → ANSYS calculation?
- 3. <u>Available (reusable) equipment?</u>
 - Actuator, motor, thermal sensor, pipes, cryogenic system itself etc.

Concept

- 1. To combine solid and cryo-gas targets
- 2. Gas target
 - \rightarrow Sealed target that is similar concept to the previous nn Λ experiment
- 3. ³H is independent from the others (due to safety restrictions such as beam current)

ANSYS

Heat simulation by ANSYS (0.3 mm thick AI)

-164.49 -177.14 -189.78 -202.42 -215.07 -227.71 -240.36 -253 最7

- $50 \,\mu$ A electron beam
- 0.3 mm Al
- → 6 W

Thermal contact coefficient $h = 300 W/m^{2}K$

ANSYS R19.2

Thermal contact coefficient $h = 300 \text{ W/m}^2\text{K}$ \rightarrow Max temp. = 130 K

Test (Pb target)

Gean4 with a 0.2 g/cm² of Pb → Mean dE = 240 keV → 6 W @25 µA

Thermal contact coefficient \rightarrow h = 300 W/m²K (and 1000 W/m²K was also tested)

Maximum temperature (0.2 g/cm² Pb, 25 μ A)

- Raster size = $1.5 \times 1.5 \text{ mm}^2$
- Beam current = 25 μ A → Heat deposit = 6 W

Max. temp.

563 K @ h = $300 \text{ W/m}^2\text{K}$ 491 K @ h = $1000 \text{ W/m}^2\text{K}$ (Melting pint = 600 K)

Very simple model does not hit the limit

Target for hypernuclear measurements

① C12-20-003 (³H)

2 C12-19-002 (^{3,4}He)

④ E12-20-013 (²⁰⁸Pb)

- 1. <u>Possibility of a combined system of solid targets and cryo-gas targets</u>
 - Mechanical issue
 - Thermal issue → Seems to be OK
- 2. <u>What are concerns for (cyo)target design ?</u> \rightarrow Any reasonable (empirical) values?
 - Maximum heat removal power (e.g. 6 + 6 = 12 W for Al cell @50 μ A)
 - \leftarrow Total removed amount was 15 W in the case of previous nn Λ experiment.
 - Temperature limits
 - → Differential pressure limits
 - Thermal contact coefficient
 → ANSYS calculation?
- 3. <u>Available (reusable) equipment?</u>
 - Actuator, motor, thermal sensor, pipes, cryogenic system itself etc.

Update from the last PAC; ³H (and ⁴H) target

<u>Target</u>: High density → Low density

- Thickness 174 (312) → **37 (74)** mg/cm²
 - Density 72 (130) → 2.1 (4.3) mg/cm³
 - Cell size $\phi 50 \rightarrow \phi 200$ mm

<u>Beamtime</u>

• 10 (1) → **20 (2)** days

XS = 5 (20) nb/sr, I = 50
$$\mu$$
 A
→ Y = 23 (139) events /day
→ Y^{tot.} = 464 (278) events

 $\begin{cases} \text{VP flux} = 2 \times 10^{-5} \, (/\text{e}), \, \epsilon_{\text{det}} = 0.75, \\ f_{\text{density}} = 0.85, \, f_{K\text{decay}} = 0.26, \, \Omega_K = 7 \, \text{msr} \end{cases} \end{cases}$

Expected Spectra and statistical errors

Hypertriton $\binom{3}{\Lambda}H$ puzzle

 $\begin{bmatrix} B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV (emulsion}^1) \\ B_{\Lambda} = 0.41 \pm 0.12 \pm 0.11 \text{ MeV (STAR}^2) \end{bmatrix}$

RMS radius,
$$\sqrt{\langle r^2 \rangle} \cong \frac{\hbar}{\sqrt{4\mu B_{\Lambda}}}$$

 ¹ M. Juric *et al.*, *Nucl. Phys. B* **52**, 1-30 (1973).
 ² The STAR Collaboration, *Nature Physics* (2020); https://doi.org/10.1038/s41567-020-0799-7 $au = (0.5 \sim 0.92) au_{\Lambda}$ (HypHI, STAR, ALICE)

Fadeev calcuation with realistic NN/YN interactions $\rightarrow \tau = 0.97 \tau_{\Lambda}$ (H. Kamada *et al., Phys. Rev. C* 57, 4 (1998))

Requested beamtime (w/ low density targets)

Calibration	Target + Sieve Slit	Reaction	z _t range (mm)	Beamtime (day)	Remarks
Mom. + z _t	Н	$p(e,e'K^+)\Lambda,\Sigma^0$		1	Λ: 6100, Σ ⁰ : 2030
Mom. + z _t	¹² C (multi foils)	$^{12}C(e,e'K^{+})^{12}_{\Lambda}B$	$-115 < z_t < 115$	1	$^{12}_{\Lambda}B^{g.s.}: 300 \times 5$
Angle + z _t	¹² C (multi foils) + SS	-		0.2	
Zt	Empty	-	$-100 < z_t < 100$	0.1	+ Background study
	Empty (or gas) + SS	_		0.2	+ Angle resolution check
Physics	^{3,4} He	^{3,4} ΛΗ	$-100 < z_t < 100$	22	

<u>Major contributions to a systematic error on B_{Λ} </u>

- Energy scale calibration^(*): ±50 keV
- Energy loss correction: <u>+40</u> keV
 - target density $|\Delta d| = 3\%$
 - cell thickness uniformity $|\Delta t| = 10\%$

$$|\Delta B^{\rm sys.}_{\Lambda}| = 70 \, \rm keV$$

(*) TG et al., NIMA 900 (2018) 69-83

