e Slit Ne

000000000000

000000

0000000

0.0.0

Takeru Akiyama (秋山タケル) Graduate Student, TOHOKU UNIV. December 8th, 2021

Introduction

About Sieve Slit

Rough Design (basic idea)

Thickness, Hole size, spacing, etc... 3D CAD model

Simulation Study by Geant4 (PCS+HKS horizontal)

Hole Image of new Sieve Slit

Future Tasks

Introduction

About Sieve Slit

Sieve Slit: Metal Plate with a lot of holes,

used for angular calibration

Mounted just behind of target

- Specify the position of particles at the plane
- Angular calibration through optimization of hole pattern image

Mounted just behind of target

Specify the position of particles at the plane

Angular calibration through optimization of hole pattern image

Rough Design

Thickness, Hole size and spacing, etc...

3D CAD model

6

Requirement & Design Plan

Thickness: 50.8 mm (same as E05-115)

Hole tilt:

Angle viewed from target (Z = 0)

From target to SS: 60 cm

(150 cm @E05-115)

Hole size: Φ = 3.5 mm at least

to keep acceptance for Z = \pm 10 cm

Hole spacing: 8 mm for X, 9 mm for Y

 (Angl. Resolution of HKS ΔX' = 1.24 mrad, ΔY' = 2.96 mrad)
 shift half a cell every other row

3D CAD Model

8

Requirement & Design Plan

Thickness: 50.8 mm (same as E05-115)

Hole tilt:

Angle viewed from target (Z = 0) From target to SS: 60 cm

(150 cm @E05-115)

Hole size: Φ = 3.5 mm at least

to keep acceptance for Z = \pm 10 cm

Hole spacing: 8 mm for X, 9 mm for Y

 (Angl. Resolution of HKS ΔX' = 1.24 mrad, ΔY' = 2.96 mrad)
 shift half a cell every other row

3D CAD Model

Requirement & Design Plan

3D CAD Model

Requirement & Design Plan

3D CAD Model

Thickness: 50.8 mm (same as E05-115)

Hole tilt:

Angle viewed from target (Z = 0) From target to SS: 60 cm

(150 cm @E05-115)

Hole size: Φ = 3.5 mm at least

to keep acceptance for Z = \pm 10 cm

Hole spacing: 8 mm for X, 9 mm for Y

 (Angl. Resolution of HKS ΔX' = 1.24 mrad, ΔY' = 2.96 mrad)
 shift half a cell every other row

Simulation Study by Geant4

Setup

Hit Distribution at SS Plane

Reconstructed Image of Hole Pattern

PCS+HKS (horizontal) Setup

PCS+HKS (horizontal) Setup

TRUE Hit Pattern @Front of SS

No physics process included, Tracks killed at SS body Required a hit to TOF2X

• Acceptance shape shifted along X direction for $Z \neq 0$

Reconstructed Hit Pattern @Front of SS

• Acceptance shape shifted along X direction for $Z \neq 0$

Hole pattern can be identified well

Future Tasks

The angle covered by a single hole

Target to SS = 60 cm, Hole Size = $3.5 \text{ mm} \Rightarrow -5.8 \text{ mrad/hole}$

c.f.) at E05-115 Experiment, Target to SS = 150 cm, Hole Size = 6 mm ⇒ ~ 4.0 mrad/hole

Is it possible to calibrate the angle with such larger holes?

or, prepare several sieve slits (with smaller holes) for different Z ??

 \rightarrow Estimation of achievable resolution by the matrix tuning is necessary

Effect of physics interaction with the SS

S/N ratio, deterioration due to hole edges

5

3Ē

-2

-3

-5≞ _5

3

0

-2

-5

-5 _4 -3

Collimator Y [cm]

-4 -3

Collimator Y [cm]

Hit Pattern @Rear of SS

Tracks which hit the SS are killed.

Hit Pattern @Rear of SS

Tracks which hit the SS are killed.

φ3.5mm hole = seems reasonable hole size

Angular Resolution @Target

Position Resolution @front of SS

Angular Resolution @Target

Sieve Slit removed, Particles emitted from the point, Order of Matrix = 3

Z = -10 cm

Position Resolution @front of SS

Sieve Slit removed, Particles emitted from the point, Order of Matrix = 3

Z = -10 cm

Z = +10 cm

Summary of Resolution (FWHM)

Z [cm]	order	δX' [mrad]	δY' [mrad]	δX [mm]	δY [mm]
0	6	0.612	1.32	0.368	0.775
0	5	0.736	1.32	0.428	0.792
0	4	1.01	1.92	0.592	1.13
0	3	1.24	2.96	0.693	1.73
-10	6	0.657	1.07	0.450	0.743
-10	3	1.59	2.57	1.05	1.75
+10	6	0.619	1.31	0.309	0.656
+10	3	1.07	3.44	0.511	1.69

Blurs from both 2 holes adjacent

 \rightarrow spacing: ~?? σ separation (4 mm for X, 7 mm for Y)

