On Bin Centering

Evan McClellan

October 11, 2018

Where to stick your data points, Lafferty and Wyatt

Nuclear Instruments and Methods in Physics Research A 355 (1995) 541-547

Where to stick your data points:
The treatment of measurements within wide bins
G.D. Lafferty ${ }^{\text {a,* }}$, T.R. Wyatt ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Department of Physics and Astronomy. The University of Manchester. Manchester MI3 9PL, UK ${ }^{6}$ PPE Division, CERN, CH-1211 Geneva 23, Switzerland

Received 17 June 1994; revised form received 29 August 1994

Definitions

$$
\begin{gathered}
g_{\text {meas }}=n_{\text {meas }} / \Delta x \\
\left\langle g_{\text {meas }}\right\rangle=\frac{1}{\Delta x} \int_{x_{1}}^{x_{2}} g(x) d x
\end{gathered}
$$

- $x_{1}=$ left bin-edge
- $x_{2}=$ right bin-edge
- $\Delta x=x_{2}-x_{1}$
- $g(x)=$ true generating function

Not the middle of the bin!

$$
x_{c}=x_{1}+\Delta x / 2
$$

Not the barycenter!

$$
\begin{gathered}
\bar{x}_{\text {true }}=\frac{\int_{x_{1}}^{x_{2}} x g(x) d x}{\int_{x_{1}}^{x_{2}} g(x) d x} \\
\bar{x}_{\text {data }}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\lim _{N \rightarrow \infty} \bar{x}_{\text {data }}=\bar{x}_{\text {true }}
\end{gathered}
$$

The answer:

$$
\begin{gathered}
g\left(x_{/ w}\right)=\frac{1}{\Delta x} \int_{x_{1}}^{x_{2}} g(x) d x \\
x_{/ w}=g^{-1}\left(\frac{1}{\Delta x} \int_{x_{1}}^{x_{2}} g(x) d x\right)
\end{gathered}
$$

$x_{l w}=$ large width (or lafferty wyatt) ordinate

- $g(x)$ must be known
- need $g^{-1}(x)$, analytically or numerically

Notes

- Opinion: No bin-centering correction to abscissa!
- Comparing data to model, should use that model to calculate $x_{\text {/w }}$
- If $g(x)$ is linear, then $x_{\text {/w }}=x_{c}=\bar{x}$

What about corrections?

- For bin-by-bin corrections in x, should we use $x_{l w}$ or \bar{x} ?
- Radiative Corrections:
- Use $x_{/ w}$, since it uses a model anyway
- Positron Subtraction:
- Probably use $x_{/ w}$? Need to pick a $g(x) \ldots$
- Endcap Subtraction:
- Probably use $x_{/ w}$? Need to pick a $g(x) \ldots$
- Hopefully has a very small effect on corrections

What about ratio measurement?

- What about our ratio results?
- Keep ratio as pure as possible!
- We measure $r(x)$ in an x-bin, not at an x-value
- Calculate $r_{\text {meas }}(x)$ first, then decide on x
- For us, $g(x)$ and $h(x)$ should be pretty similar

$$
r(x)=\frac{g(x)}{h(x)}
$$

$$
\left\langle r_{\text {meas }}\right\rangle=r\left(x_{/ w}\right)=\frac{\int_{x_{1}}^{x_{2}} g(x) d x}{\int_{x_{1}}^{x_{2}} h(x) d x}
$$

Ratio toyMC example

