RC Model Comparison

March 7, 2019

Nuclei structure function:

- Get F_{2d} , F_{2p} from models;
- Get EMC ratio $\frac{F_2(^3He)}{F_{2d}}$, $\frac{F_2(^3H)}{F_{2d}}$ or $\frac{F_2(A=3)}{F_{2d}}$ from model;
- For $\frac{F_2(A=3)}{F_{2d}}$, need to remove the isoscalar correction, which need F_{2n}/F_{2p} input:

$$\frac{F_2(A)_{iso}}{F_{2d}} = \frac{F_2(A)}{F_{2d}} \frac{\frac{1}{2}(1 + F_2^n/F_2^p)}{\frac{1}{A}(Z + (A - Z)F_2^n/F_2^p)}$$
(1)

•
$$F_2(^3He) = F_{2d} \times \frac{F_2(^3He)}{F_{2d}}, F_2(^3H) = F_{2d} \times \frac{F_2(^3H)}{F_{2d}}$$

RC Model Comparison March 7, 2019 2 / 13

- *F*_{2*d*}:
 - Bodek;
 - NMC 1995 (Phys. Lett. B364 107-115,1995)
- EMC ratio $\frac{F_2(A=3)}{F_{2d}}$
 - K&P (no isoscalar correction);
 - 2 SLAC EMC (isoscalar nuclei)
- F_{2n}/F_{2p}
 - **1** linear: $F_{2n}/F_{2p} = 1 0.8 * x$
 - CJ15;
 - NMC 1992 (Nucl. Physics. B 371(1992) 3-31)

```
model111: Bodek + K&P;
```

model211: NMC + K&P;

model121: Bodek + SLAC EMC + linear
$$F_{2n}/F_{2p}$$
;

model122: Bodek + SLAC EMC + CJ15;

model123: Bodek + SLAC EMC + NMC1992;

$$\frac{\sigma(^{3}H)}{\sigma(^{3}He)} = \frac{Yield(^{3}H) * RC(^{3}H)}{Yield(^{3}He) * RC(^{3}He)}$$
(2)

 $\frac{RC(^{3}H)}{RC(^{3}He)}$ would affect the measured ratio.

Following shows the $\frac{RC(^3H)}{RC(^3He)}$ model dependence.

RC Model Comparison

D/p RC ratio model111/model211

The difference between model111 and model211 is within 0.26%

He3/D RC ratio between models

The difference due to using different F_2^d models is within 0.25%.

The difference due to using different F_2^n/F_2^p models is within 0.42%.

He3/D model111/model122 ratio

The difference due to using different EMC model is within 0.25%

H3/D RC ratio between models

The difference due to using different F_2^d models is within 0.3%.

The difference due to using different F_2^n/F_2^p models is within 0.54%.

H3D model111/model122 ratio

The difference due to using different EMC model is within 0.2%

H3/He3 RC ratio between models

model121/model122 model121/model123

The difference due to using different F_2^n/F_2^p models is within 1%.

The difference due to using different F_2^d models is within 0.35%.

H3/He3 model111/model122 ratio

The difference due to using different EMC model is within 0.2%

The plots show H3 EMC ratio, He3 EMC ratio and F_2^n/F_2^p from models with x from 0.1 to 0.9 with step 0.01 and Q2=14*x

Conclusions

- The maximum difference is 1% on H3/He3 with NMC F_2^n/F_2^p .
- We know that the NMC F_2^n/F_2^p is definitely not correct at high x. After excluding NMC F_2^n/F_2^p , the maximum difference is 0.35%. So the maximum systematic error for radiative correction should be less than 0.5%.
- https://github.com/hanjie1/Radiativecorrection/tree/master/T2_externals_clean
 In TARG file:

```
Nuc Tail Method 1

Nuc FormFac Mdl 1

DIS_model 111 ← change model here
```