nnL Analysis Meeting September 9, 2021

> Bishnu Pandey Hampton University

Can a Fake Peak be Produced?

- Events are selected within -40 to -30 MeV which are non-physical.
- The wrong selection of events can deform the matrix.
- The free Λ peak in the nn Λ spectrum becomes much narrower than the actual peak (~6.5 MeV).

What would be the resolution of a heavy system (A>1) if no Al data involved in tune?

- Initially, the momentum matrices are tuned by selecting the events from the 3 different regions of 27Mg_L.
- When the peak width of Λ/Σ reached ~ 1.4 MeV, the matrices are further tuned without involving AI data.

Continue..

• While the matrices are tuned further without involving the AI data, the preexisted peaks blow up.

- The phenomena is significant as the ground state of 27Mg_L widen from 1.46 to 2.75 MeV.
- If no AI data is involved in tune, we don't know the exact resolution of the heavy system (A>1).

Consistency Test by Moving the Events Selection Gates

• The events selection gates are chosen by considering the previous measurements on A=28 hypernuclei.

- To check the consistency, the gates are artificially shifted by 2 MeV and then further by 2 MeV.
- For each case, the matrices are tuned until the width of Λ reached ~ 1.35 MeV (Σ ~1.3 MeV).

Consistency Test Continue..

• For each tune, the peak width of Λ (H/T) agreed within 50 KeV.

Consistency Test Continue.. (27Mg_L spectrum)

- For the ground state there is a good agreement (consistency is less than 1 MeV level).
- For the 2nd and 3rd peak the disagreement is because the selected region was close to gate boundary.

Closer View of 27Mg_L hypernuclei

For this study events gated within -20 to -10, -10 to 0 and 0 to 10 MeV of 27Mg_L.

• The statistical significance for first, second, and 3rd peak is calculated as 2.75, 3.42 and 2.42 respectively.

Consistency Test Continue.. (nnA Spectrum)

 For each tune, the nnΛ spectrum is about same with similar free Λ peak width and similar enhancement above the threshold region.

Spectrum Before Al Data Involved in Tune

Before involving the Al data in Matrix Tune (all 4 plots)

Summary and Conclusions

- A fake peak can be generated anywhere but it can deform the momentum matrix.
- If the heavy system (Al data) is not involved in the tune, the resolution for the heavy system (A>1) cannot reach to the expected level.
- By involving Al data in the matrix tune, we believe that our resolution for A=3 system is around 1.3 MeV (σ) and therefore the Γ can be measured precisely.
- Involving Al is the correct way to achieve the expected resolution.

Backup Slides:

Ann Spectrum With Wider Bins

When the events are gated within -20 to -10 MeV of 27Mg_L

