## ELPHにおける ラムダ-中性子間の 終狀態相互作用研究 摺上亭大鳥(福島), ST2-2022 2022/12/16 Mizuno Masaya (Tohoku Univ.)

#### Contents

- ストレンジネスを含む核力の研究
  - AN相互作用における荷電対称性の破れ
  - ΛN終状態相互作用測定
- ELPHにおけるAn終状態相互作用実験
  - ・NKS2スペクトロメータ
  - ・NKS2実験下の理論計算
- ・まとめ

## 核カの研究

- ストレンジネスを含むバリオン-バリオン間の相互作用
- ・ 実験の研究対象
  - ・ハイパー核分光実験
    - ・ 数多くの実験データ
  - AN散乱実験
    - Λp:統計量の少ない、限られた実験データ
    - An:測定されたデータがなし
  - ・ ハイパー核4体系における荷電対称性の破れ
    - ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He の 質量 の 違い$
    - *AnとAp*間の相互作用は同じ性質なのか?

# **AN相互作用におけるCSB**



# **AN相互作用の測定**

- ・ハイパー核分光実験
  - ハイパー核のエネルギー準位からポテンシャルを構築
- ΛN散乱実験
  - ・ 散乱実験は2体の相互作用を調べるのに効果的な手法
  - 実験実施が非常に困難
    - ・ ハイペロンの寿命が非常に短い。飛行距離も数cm程度
  - 実験データが乏しい
    - データより散乱長や有効距離を決められない
    - ・ J-PRAC E40の成功により高統計Λp散乱実験が可能

# An終状態相互作用測定

- 終状態相互作用 (Final State Interaction: FSI) 測定実験
  - 散乱実験に代わる直接反応による手法
  - 生成反応後のAと中性子の相互作用
  - FSIによる断面積の変化を測定
- ・提案されている反応
  - $\gamma d \rightarrow K^{+} \Lambda n \leftarrow ELPH \sigma 計画している実験$ 
    - H. Yamamura, K. Miyazawa et al., PRC 61 (1999) 014001
    - Background:  $e^+e^-$  pair production and pion production
  - $K^-d \to \Lambda n$ 
    - W. R. Gibbs, S.A. Coon, H.K. Han, and B.F. Gibson, PRC 61 (2000) 064003
    - BNL-AGS E811→PRC 42 (1990) R475
  - $K^- d \to \Lambda n \pi^0 (K^- d \to \Lambda p \pi)$ 
    - Y. Iizawa, D. Jido, and T. Ishikawa, PRC 106 (2022) 045201
    - Background:  $K^-d \rightarrow YN\pi$ ,  $\pi^-d \rightarrow nn\gamma$ , neutron in photon detector ST2-2022 at Fukushima

### An FSIの反応模式図



#### • $\gamma d$ 反応における $K^+\Lambda$ 生成のFSI効果

# ELPH BM4光子ビームライン



## NKS2実験

- NKS2 (Neutral Kaon Spectrometer 2)
- 磁気スペクトロメータ
  - 中心磁場 0.42 T
  - 半径 0.8 m
- •液体水素・重水素標的
- アクセプタンス ~1π sr



## NKS2の検出器

- 粒子のトラッキング
  - 2つのMWDC (CDC, VDC)
  - 荷電粒子の運動量、飛跡
- ・ 粒子の飛行時間測定
  - 2つのHodoscope (IH,OH)
  - 運動量の情報と組み合わせて 粒子識別
- バックグランドの除去
  - 電子・陽電子Veto検出器 (EV)
  - 光子ビーム由来の $\gamma \rightarrow e^+e^-$ を veto



# NKS2実験下のAn FSI効果

#### • 理論計算

- 髙橋 謙太さんの修士論文 (岡山理科大 宮川研究室の学生)
  - $\gamma d \rightarrow K^+ \Lambda n$ における $K^+$ の断面積の計算
  - $E_{\gamma} = 0.95 1.25 \text{ GeV}$
  - ・ビーム軸に対する散乱角  $\theta_K = 0^\circ 20^\circ$
  - 実験室系でのdo/dp<sub>K</sub>
  - YNポテンシャルは、soft-core OBEポテンシャルであるNSC97f

## K<sup>+</sup>断面積におけるFSIの効果



## K<sup>+</sup>断面積におけるFSIの効果





## K<sup>+</sup>断面積におけるFSIの効果



ST2-2022 at Fukushima

# 断面積におけるFSIの効果



 $heta_K = 0^\circ - 5^\circ$  $E_\gamma = 1.25 \text{ GeV}$ YN pontential: NCS97f

・ハイペロンの生成閾値あたりでFSIの効果が現れる

Λn

- $E_{\gamma} > 1.05 \text{ GeV}, \ \theta_{K} = 0^{\circ} 20^{\circ} \ \overline{C} \sim 10 \text{ nb}$
- K+の運動量で10 MeV/cの幅で断面積のエンハンスが見られる

Σn

- $E_{\gamma} > 1.05 \text{ GeV}, \ \theta_{K} = 0^{\circ} 10^{\circ} \ \mathbb{C} \sim 数 \text{ nb}$
- カスプが見える

# K+断面積分布のカスプ



- Ref.[1]によると
  - ΛN ΣN結合の効果
    - ΣN閾値周辺のS行列のpoleの 位置
      - NSC97fとNSC89の エンハンスの差
      - Poleの位置はYN potential を特徴付ける重要なもの

 実験データより実際の位置を 決めたい

Ref.[1]: PRC 61 (1999) 014001

ST2-2022 at Fukushima



- ストレンジネスを含む核力の研究
  - AN相互作用における荷電対称性の破れ
    - ハイパー核の構造研究だけでなく直接反応を用いた研究を展開
    - ΛN終状態相互作用測定の実施
- ELPHにおいてAn終状態相互作用実験を計画
  - ・ ELPH第二実験室に設置されているNKS2を用いて実施
  - $\gamma d \rightarrow K^+ \Lambda n \overline{\rho} \overline{\rho} \overline{\rho} \Lambda n$  FSIによる $K^+$ 断面積の変化
  - ・NKS2実験下での理論計算
    - 髙橋 謙太さん (岡山理科大)のsoft-core OBEモデル NSC97f
      を用いた計算
    - Λn, Σn FSIにより断面積のエンハンス、ΣnではΛN ΣN結合による カスプが測定可能