Investigation of Lambda Hypernuclei within Equation of Motion Phonon Method progress report

Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/

> Collaboration Japan - Czech Republic, WEPH2022, October 2022

Motivation

Work on development of **many-body model**(s) suitable for description of **nuclear and hypernuclear structure** which aim to describe wide range of hypernuclei including medium-size & heavy systems.

This model can be used in calculations of **hypernuclear production** – especially the hypernuclei whose production is planned by experimentalists in close future (${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K, ${}^{208}_{\Lambda}$ TI).

Progress report:

- Electroproduction of Hypernuclei
- Applications of **EMPM** for the Calculations of **Hypernuclei**
- **Results** cross sections of the production of ${}^{12}_{\Lambda}B$ and preliminary results for ${}^{40,48}_{\Lambda}K$
- Summary and Future Plans

Electroproduction of Hypernuclei

Hypernuclear production:

- Elementary process of electroproduction: $p(e,e' K^*) \Lambda$
- Kinematics of the reaction
- Information about (many-body) nuclear & hypernuclear structure
- Information about the AN(N) interactions

All "ingredients" important for description of hypernuclear production.

$$\frac{d^{3}\sigma}{dE_{e}'d\Omega_{e}'d\Omega_{\kappa}} = \Gamma \left[\frac{d\sigma_{U}}{d\Omega_{\kappa}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \varepsilon \frac{d\sigma_{P}}{d\Omega_{\kappa}} \cos 2\varphi_{\kappa} + \sqrt{2\varepsilon_{L}(1+\varepsilon)} \frac{d\sigma_{I}}{d\Omega_{\kappa}} \cos \varphi_{\kappa} \right]$$

Transition

amplitude

We evaluate

hypernucleus

 $\frac{d\sigma_{U}}{d\Omega_{K}} = \frac{\beta}{2(2J_{A}+1)\sum_{jm}} \frac{1}{2j+1} \{|A_{jm}^{+1}|^{2} + |A_{jm}^{-1}|^{2}\},$ $\frac{d\sigma_{P}}{d\Omega_{K}} = -\frac{\beta}{2J_{A}+1}\sum_{jm}\frac{1}{2j+1}\operatorname{Re}\{A_{jm}^{+1}A_{jm}^{-1*}\},$ $\frac{d\sigma_{L}}{d\Omega_{K}} = \frac{\beta}{2J_{A}+1}\sum_{jm}\frac{1}{2j+1}|A_{jm}^{0}|^{2},$ $\frac{d\sigma_{L}}{d\Omega_{K}} = \frac{\beta}{2J_{A}+1}\sum_{jm}\frac{1}{2j+1}|A_{jm}^{0}|^{2},$

 $\frac{d\sigma_{I}}{d\Omega_{K}} = \frac{\beta}{2J_{A}+1} \sum_{jm} \frac{1}{2j+1} \operatorname{Re}\{A_{jm}^{0*}[A_{jm}^{+1}-A_{jm}^{-1}]\}$

P. Bydžovský et al., arXiv:2209.00881

 $\gamma_{v}(P_{\gamma}) + A(P_{A}) \longrightarrow H(P_{H}) + K^{+}(P_{K})$

annihilation **p**

 $(\Phi_H || [b^+_{\alpha'} \otimes a_{\alpha}]^J || \Phi_A)$

creation Λ

 $T_{\lambda}^{(1)} = \frac{Z}{[J_H]} \sum_{S_n} \mathcal{F}_{\lambda\eta}^S \sum_{I,M} \sum_{Im} \mathcal{C}_{LMS\eta}^{J_m} \mathcal{C}_{J_AM_AJm}^{J_HM_H} \left(J_H || F_{LM} [Y_L \otimes \sigma^S]^J || J_A \right)$

nucleus

Electroproduction of Hypernuclei

Hypernuclear production:

$$\frac{d^{3}\sigma}{dE'_{e}d\Omega'_{e}d\Omega_{\kappa}} = \Gamma \left[\frac{d\sigma_{U}}{d\Omega_{\kappa}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \varepsilon \frac{d\sigma_{P}}{d\Omega_{\kappa}} \cos 2\varphi_{\kappa} + \sqrt{2\varepsilon_{L}(1+\varepsilon)} \frac{d\sigma_{I}}{d\Omega_{\kappa}} \cos \varphi_{\kappa} \right]$$

 $\mathsf{M}_{\mu} = \langle \Psi_{\mathsf{H}} | \langle \chi_{\mathsf{K}} | \sum_{i=1}^{\mathbb{Z}} \hat{J}_{\mu}(j) | \chi_{\gamma} \rangle | \Psi_{\mathsf{A}} \rangle$

Fig. from M. Sotona, S. Frullani,

Prog. Theor. Phys. Suppl. 117, 151 (1994)

 $\left(\Phi_{H} \mid \mid [b_{\alpha'}^{+} \otimes a_{\alpha}]^{J} \mid \mid \Phi_{A} \right)$

 $\gamma_{\rm V}(P_{\rm X}) + {\rm A}(P_{\rm A}) \longrightarrow {\rm H}(P_{\rm H}) + {\rm K}^+(P_{\rm K})$

Study of the effects of the $\Lambda N(N)$ interactions & the used manybody model...

F. Cusanno et al., Phys. Rev. Lett. 103 (2009), 202501.

EMPM for Hypernuclei

EMPM extended on single- Λ hypernuclei

hypernuclei with Λ in even-odd nuclear cores

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

We **couple AN TDA** states with |HF> and **(multi)phonon** excitations of |HF>

 $\begin{array}{lll} \mathcal{H}_0 &=& \{R_\nu^\dagger | \mathrm{HF} > \} \\ \mathcal{H}_1 &=& \{R_\nu^\dagger O_{\mu_1}^\dagger | \mathrm{HF} > \} \\ \mathcal{H}_2 &=& \{R_\nu^\dagger O_{\mu_1}^\dagger O_{\nu_1}^\dagger | \mathrm{HF} > \} \end{array}$

We can apply this method to calculate structure of ${}^{12}_{\Lambda}B$, ${}^{12}_{\Lambda}C$, ${}^{16}_{\Lambda}N$, ${}^{16}_{\Lambda}O$, ${}^{40}_{\Lambda}K$, ${}^{40}_{\Lambda}Ca$, ${}^{48}_{\Lambda}K$, ${}^{48}_{\Lambda}Ca$ etc.

Nuclei:HF \rightarrow TDA \rightarrow EMPMHypernuclei:p-n- Λ HF \rightarrow N Λ TDA \rightarrow ext.EMPM

EMPM for Hypernuclei

EMPM extended on single- Λ hypernuclei

It is more important to study such hypernuclei from the point of view of

experiment (production of hypernuclei ${}^{12}_{\Lambda}B$, ${}^{16}_{\Lambda}O$, ${}^{16}_{\Lambda}N$, ${}^{40}_{\Lambda}K$, ${}^{48}_{\Lambda}K$,...)

II) hypernuclei with Λ in even-odd nuclear cores

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}$

Our theoretical formalism:

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$$

 $\begin{aligned} \mathcal{H}_{0} &= \{R_{\nu}^{\dagger}|\text{HF}>\} \\ \mathcal{H}_{1} &= \{R_{\nu}^{\dagger}O_{\mu_{1}}^{\dagger}|\text{HF}>\} \\ \mathcal{H}_{2} &= \{R_{\nu}^{\dagger}O_{\mu_{1}}^{\dagger}O_{\nu_{1}}^{\dagger}|\text{HF}>\} \end{aligned}$

 $|\nu\rangle = R_{\nu}^{\dagger}|\mathrm{HF}\rangle$ We construct the **Hamiltonian** matrix: 1) The diagonal block $\mathcal{H}_0 \times \mathcal{H}_0 = \mathbf{N} \mathbf{\Lambda} \mathbf{T} \mathbf{D} \mathbf{A}$ energies $|\beta> = \sum_{\nu \mu} X^{\beta}_{\nu \mu} R^{\dagger}_{\nu} Q^{\dagger}_{\mu} | \mathrm{HF}>$ 2) The diagonal block $\mathcal{H}_1 \times \mathcal{H}_1$ = Equation of Motion 3) The nondiagonal block $\mathcal{H}_0 \times \mathcal{H}_1 =$ not difficult to calculate \mathcal{H}_1 \mathcal{H}_0 **Equation of Motion:** E⁽⁰⁾ Ho1 $\mathcal{A}X = EX$ A-matrix $\mathcal{A} = \langle \beta | [\hat{H}, R_{\nu}^{\dagger}] | \mu \rangle + E_{\mu} \langle \beta | R_{\nu}^{\dagger} | \mu \rangle$ E1(1) 0 E2(1) Eigen-value problem in an overcomplete E.1(1) 0 non-orthogonal basis... $\overline{\mathcal{AD}C} = E\overline{\mathcal{D}C}$ **Eigen-value problem** in the **reduced space** (linearly independent subset of states) $-B_{A} = E_{i} + \varepsilon_{E}^{N}$ **D-matrix** = overlap matrix of the basis states (A.D) – must be hermitian

Hypernuclei with **single**-Λ particle: Hamiltonian

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}$

Example: NN(+NNN) potential

phenomenological **NN** potential **Brink-Boeker**

Nucl. Phys. A91, 1, (1967)

- realistic chiral NN potential NNLO_{opt} Phys. Rev. Lett. **110**, 192502, (2013)
- realistic chiral NN+NNN potential NNLO_{sat}
 Phys. Rev. C91, 051301(R), (2015)

 ΛN potential

 G-matrix effective ΛN potential derived from Juelich & Nijmegen YN Prog. Theor. Phys. Suppl. 117, 361 (1994)

$$V_{AN}(r) = \sum_{i=1}^{3} (a_i + b_i k_{\rm F} + c_i k_{\rm F}^2) \exp[-r^2/\beta_i^2]$$

Juelich-A YN:

	$\beta_i(\text{fm})$	1.25	0.70	0.45
¹ E	a	-25.82	-389.4	859.0
	Ь	-12.51	401.2	-303.2
	с	2.437	-136.0	188.8
⁸ E	a	-45.01	-296.6	1094.
	Ь	4.620	218.3	-504.6
	С	.7500	-92.50	230.0
10	a	-14.54	144.7	734.6
	Ь	3.615	27.50	76.37
	с	8750	-5.000	3.125
^{\$} 0	a	-25.91	248.1	615.3
	ь	5.410	210.9	-1260.
	с	.5000	-123.1	734.8

 G-matrix effective ΛN potential derived from Juelich & Nijmegen YN Prog. Theor. Phys. Suppl. 117, 361 (1994)
 Gaussian-like form – easy to implement, interaction is effective (we can take just ΛN-ΛN part) but dependent on a parameter k_F

$$V_{AN}(r) = \sum_{i=1}^{3} (a_i + b_i k_{\rm F} + c_i k_{\rm F}^2) \exp[-r^2/\beta_i^2]$$

Dependence of the Λ single-particle energies on $k_{_{\rm E}}$

 \mathbf{k}_{F} as a parameter to tune the proper effective ΛN interaction. But tuning should be done at the level of the beyond mean-field calculation.

 G-matrix effective ΛN potential derived from Juelich & Nijmegen YN Prog. Theor. Phys. Suppl. 117, 361 (1994)

Generator Coordinate Method (GCM) Prog. Theor. Phys. Suppl. **117**, 361 (1994)

NA TDA (Fig. by J. Pokorny)

Big variability among different N Λ potentials

 G-matrix effective ΛN potential derived from Juelich & Nijmegen YN Prog. Theor. Phys. Suppl. 117, 361 (1994)

ΝΛ ΤDA (Fig. by J. Pokorny)

 $^{16}_{\Lambda}$ O, N 2 LO $_{
m sat}$, $\hbar\omega=$ 16.0 MeV 0.0-2.5-5.0 2^{-} 1⁻ -7.5-10.01 -12.5 0^{-} -15.0exp -17.5-20.0JB ND NS JA NF NL Interaction

> **ΝΛ ΤDA** (Fig. by J. Pokorny)

Big variability among different N Λ potentials

NF – seems to have good behavior for $N\Lambda$ TDA (if $k_{_F}$ properly tuned)

Cross section of electroproduction of ¹² B

 G-matrix effective ΛN potentials "NF" derived from Juelich and Nijmegen YN Prog. Theor. Phys. Suppl. 117, 361 (1994)

Cross section of electroproduction of 40,48 K

Summary

- **Extensions** of EMPM to calculate single- Λ hypernuclei
- Both nuclear & hypernuclear calcs. useful to study production of hypernuclei
- Preliminary results of the cross section of the electroproduction of ${}^{12}_{\Lambda}B$, ${}^{40,48}_{\Lambda}K$
- Tasks to be addressed:
 - study of ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K, ${}^{208}_{\Lambda}$ TI (their exper. measurement is planned in close future)
 - formalism to study isospin dependence of ΛNN interaction (${}^{40}_{\Lambda}K \& {}^{48}_{\Lambda}K$)
- More long-term tasks:
 - further development of EMPM itself (coupling to 2-phonon states)
 - formulation of whole method in deformed HF basis
 - study of structure **E** hypernuclei

Many thanks to all my collaborators!!

P. Bydžovský, G. De Gregorio, D. Denisova, F. Knapp, N. Lo Iudice, D. Petrellis, J. Pokorný, D. Skoupil