Correction for contamination from ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}$ decay in tritium target

Tyler Kutz

June 5, 2018

Initial state of ${ }^{3} \mathrm{H}$ target

From TGT-RPT-17-007 and TGT-CALC-17-020:

- The tritium cell was filled on October 23, 2017 ($t=0$ for decay)
- The cell contained the following masses of tritium and helium:

$$
\begin{aligned}
m_{3} \mathrm{H} & =0.102 \pm 0.001 \mathrm{~g} \\
m_{3}{ }^{\mathrm{He}} & =3.01 \times 10^{-5} \pm 3.91 \times 10^{-7} \mathrm{~g}^{*}
\end{aligned}
$$

*No error was provided for initial helium mass. This assumes the same 1% error as in the initial tritium mass.

- Taking into account cell parameters and corresponding uncertainties, this leads to initial target thicknesses (in the tritium cell) of:

$$
\begin{aligned}
\eta_{3_{\mathrm{H}}}^{0} & =0.077 \pm 0.001 \mathrm{~g} \mathrm{~cm}^{-2} \\
\eta_{{ }_{3} \mathrm{He}} & =2.26 \times 10^{-5} \pm 3.69 \times 10^{-7} \mathrm{~g} \mathrm{~cm}^{-2}
\end{aligned}
$$

${ }^{3} \mathrm{H}$ half-life

According to the Comprehensive Review and Critical Evaluation of the Half-Life of Tritium ${ }^{1}$, the tritium half-life is:

$$
\tau_{3} \mathrm{H} \equiv \tau=4500 \pm 8 \text { days }
$$

For exponential decay

$$
N(t)=N_{0} e^{-t / \tau},
$$

the relative error in N arising from $\delta \tau$ is given by:

$$
\begin{aligned}
\left(\frac{\delta N}{N}\right)_{\tau} & =\frac{1}{N}\left(\frac{\partial N}{\partial \tau}\right) \delta \tau \\
& =\left(\frac{t}{\tau^{2}}\right) \delta \tau
\end{aligned}
$$

With $\delta \tau=8$ days, it would take 7 years for $(\delta N / N)_{\tau}$ to reach 0.1% The uncertainty in the half-life will be neglected

[^0]
Decay

Tritium effective thickness:

$$
\eta_{3} \mathrm{H}=\eta_{{ }_{3} \mathrm{H}}^{0}\left(e^{-t / \tau}\right)
$$

Helium effective thickness (in tritium cell):

$$
\eta_{3_{\mathrm{He}}}^{\prime}=\eta_{3_{\mathrm{He}}}^{0}+\eta_{3_{\mathrm{H}}}^{0}\left(1-e^{-t / \tau}\right)
$$

Helium contamination:

$$
c \equiv \frac{\eta_{3_{\mathrm{He}}}^{\prime}}{\eta_{3} \mathrm{H}}=\frac{\eta_{3_{\mathrm{He}}}^{0}+\eta_{3_{\mathrm{H}}}^{0}\left(1-e^{-t / \tau}\right)}{\eta_{{ }_{3} \mathrm{H}}^{0}\left(e^{-t / \tau}\right)}
$$

Tritium effective thickness

Helium effective thickness (in tritium cell)

Contamination

Correcting for contamination

Contaminated tritium cross section (what is actually measured):

$$
\begin{aligned}
\sigma_{3} \mathrm{H}
\end{aligned} \frac{N_{3_{\mathrm{H}}}^{c}}{\eta_{{ }_{3} \mathrm{H}}^{c}}=\frac{N_{3_{\mathrm{H}}}+N_{3_{\mathrm{He}}}^{\prime}}{\eta_{3^{3} \mathrm{H}}+\eta_{3^{\mathrm{He}}}^{\prime}}
$$

But $\sigma_{{ }^{3} \mathrm{He}} \propto N_{3_{\mathrm{He}}}^{\prime} / \eta_{{ }^{\mathrm{He}}}^{\prime} \equiv \sigma_{{ }_{3} \mathrm{He}}^{\prime}$:

$$
\frac{N_{3^{H}}}{\eta_{{ }^{3} \mathrm{H}}}=\left(\frac{N_{3^{4}}^{c}}{\eta_{3_{\mathrm{H}}}^{c}}\right)(1+c)-c\left(\sigma_{3_{\mathrm{He}}}^{\prime}\right)
$$

[^0]: ${ }^{1}$ J. Res. Natl. Inst. Stand. Technol. 105, 541 (2000)

