Workshop of Electro- and Photoproduction of Hypernuclei and Related Topics 2022

Current status of hypertriton binding energy measurement at MAMI

Ryoko Kino, Tohoku University

for the A1 collaboration

October 6, 2022

Contents

- > Lambda binding energy of Hypertriton
- Previous experiment of decay-pion spectroscopy at MAMI
- > Experimental setup and updates
 - Suppression of systematic errors
 - The new target design of Lithium

Summary

A Binding Energy of Hypertriton

Hypertriton d-Λ binding system

- ➢ Still large experimental uncertainties:
 STAR 2020 : $0.406 \pm 0.120_{(stat.)} \pm 0.110_{(syst.)}$ MeV
 ALICE 2021 : $0.050 \pm 0.060_{(stat.)} \pm 0.100_{(syst.)}$ MeV
- > Value still dominated by Emulsion data -77 %

Precise measurement is needed!

Decay-pion spectroscopy A. Esser, S. Nagao et al., PRL 114 (2015) 232501. 35 2012 $^{4}_{\Lambda}H$ at MAMI Events / (250 keV/c) 30 $^{3}_{\Lambda}H$ 25 20 15 virtual photon 10 SpekA or C 5 fragmentation Electron scattering off proton Kaos or de-excitation 2-body decay at rest with E = 1.5 GeV0 Detect K^+ as strangeness tag 115 120 125 130 135 $m(^{A}_{\Lambda}Z) = \sqrt{m(^{A}(Z+1))^{2} + p_{\pi}^{2}} + \sqrt{m_{\pi}^{2} + p_{\pi}^{2}}$ F. Schulz, Doctoral thesis, J.G. Univ. of Mainz (2015) Events / (45 keV/c) 45 2014 ⁴_{\lambda}H: $B_{\lambda} = 2.12 \pm 0.01$ (stat.) ± 0.09 (syst.) MeV $^{4}_{\Lambda}H$ (2012)40 35 30 $B_{\Lambda} = 2.157 \pm 0.005 \text{ (stat.)} \pm 0.077 \text{ (syst.)} \text{ MeV}$ (2014)25 20 the new experiment 10 Suppression of systematic errors Ω 120 125 135 115 130 Ensuring the yield of ${}^{3}_{\Lambda}$ H Pion momentum [MeV/C]

Setup for the experiment

Magnetic spectrometer A & C

- > Offer high momentum resolution of $\sim 10^{-4}$
- calibration limited to 10⁻⁴ by MAMI energy

Kaos

- Detection of kaons
- \rightarrow Identify hyperon production events
- Short central orbital length (~ 6.4 m) \rightarrow Suitable for short-live kaons ($c\tau \sim 3.7$ m)
- ➢ Wide momentum acceptance→ High yield of kaons

Coincidence events: Kaos and (A or C)

 \blacktriangle Both of spectrometers covering momentum range

Kaos can see protons & pions presice calibration is needed to see Kaons

Suppression of systematic errors

Precise field measurement of an Acc. dipole magnet

S. Tomita, Master thesis, Tohoku Univ. (2016)

Interference of undulator radiation

Relativistic γ via undulator eq.:

$$\lambda_{osc} = 2 \gamma^2 \lambda_{light}$$

→ Precision of 18 keV possible

P. Klag et al., NIM A 910 (2018) 147–156

October 6, 2022

WEPH RE:2022 - Ryoko Kino, Tohoku Univ.

 $\lambda = 80 \text{ mm}$

undulator U₄

undulator U

Target design of ⁷Li

⁹Be 47mg/cm², 40 – 60 μ A

⁷Li 2430 mg/cm², ~1 μ A

Less background as ⁹Be No heavy He with similar decay pion momenta: $^{7}_{\Lambda}$ He: 115.7 $^{8}_{\Lambda}$ He: 116.5 [MeV/c] $^{3}_{\Lambda}$ H: 114.3 MeV/c)

Yield estimate:

 $^{3}_{\Lambda}$ H factor of ~10 lower than $^{4}_{\Lambda}$ H \rightarrow Higher luminosity is needed!

- Beam direction 45 mm long
 - \rightarrow Maximized rate of hypernuclei

Kaos

Spek-A

Li target

e− beam

linear &

rotary motors

Summary

Beamtime schedule 2022

July 11 th – Aug. 1 st	: Commissioning run
	(Kaos started up again, confirmed coincidence peak)
Sept. 16 th – Oct. 17 th	: Physics run → ongoing!
Apr. – May 2023	: Spectrometer calibration run

- > Momentum setting to observe both of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$
- \blacktriangleright New target system \rightarrow suppress BG & higher luminosity
- \succ New calibration via undulator light interference \rightarrow minimize syst. error

Our goal: total error of ± 20 keV in Λ binding energy

