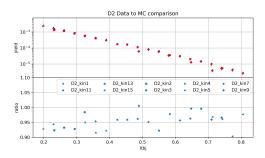
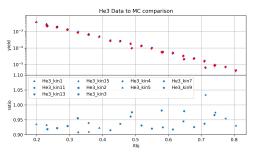
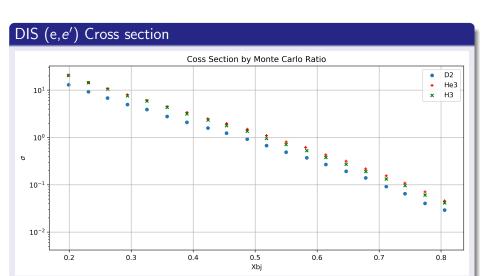
Cross Section

$$N_{e} = L*\left(rac{d\sigma}{d\Omega dE'}
ight)*\left(\Delta E'\Delta\Omega
ight)\epsilon*A\left(E' heta
ight) + BackGround$$

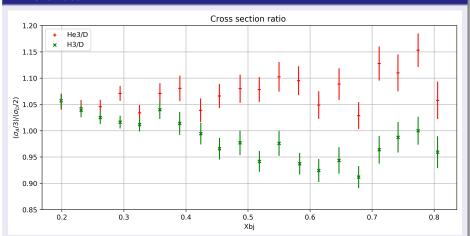
- L Luminosity $\equiv \#$ of electrons per scattering centers
- $(\Delta E' \Delta \Omega)$ = size of bin
- $\epsilon =$ efficiencies
- $A(E'\theta) = Acceptance$


$$\begin{aligned} \textit{Yield}_{\textit{data}} &= \frac{(\textit{N}_{e} - \textit{BackGround})}{\textit{Efficency}} = \textit{L} * \sigma^{\textit{data}} * (\Delta \textit{E}' \Delta \Omega) * \textit{A} (\textit{E}' \theta) \\ & \textit{Yield}_{\textit{MC}} = \textit{L} * \sigma^{\textit{mod}} * (\Delta \textit{E}' \Delta \Omega) * \textit{A} (\textit{E}' \theta) \end{aligned}$$


Cross section by Monte carlo ratio method: $\frac{d\sigma}{d\Omega dE'} = \sigma^{mod} * \left[\frac{Yield_{data}(E',\theta)}{Yield_{MC}(E',\theta)} \right]$



Monte Carlo to Data


- For Deuterium on kin15, we have 66 runs
- Use enough runs to average 10k events per bin
- monitoring the kinematic overlapping region

EMC effect

- Includes statistical error
- Need to add error from systematic studies