The cross-section measurement for the ³H(e,e'K⁺)nn∧ reaction

Collaboration meeting 2021

This presentation is based on the paper submitted to PTEP

≻Accepted on Nov. 22

PTEP

The cross-section measurement for the ${}^{^{3}}\mathrm{H}(e,e'K^{+})nn\Lambda$ reaction

K. N. Suzuki ^{†1}, T. Gogami ^{‡1,2}, B. Pandey³, K. Itabashi², S. Nagao², K. Okuyama²,
S. N. Nakamura², L. Tang^{3,4}, D. Abrams⁵, T. Akiyama², D. Androic⁶, K. Aniol⁷,
C. Ayerbe Gayoso⁸, J. Bane⁹, S. Barcus⁸, J. Barrow⁹, V. Bellini¹⁰, H. Bhatt¹¹,
D. Bhetuwal¹¹, D. Biswas³, A. Camsonne⁴, J. Castellanos¹², J-P. Chen⁴, J. Chen⁸,
S. Covrig⁴, D. Chrisman^{13,14}, R. Cruz-Torres¹⁵, R. Das¹⁶, E. Fuchey¹⁷, K. Gnanvo⁵,
F. Garibaldi^{10,18}, T. Gautam³, J. Gomez⁴, P. Gueye³, T. J. Hague¹⁹, O. Hansen⁴,
W. Henry⁴, F. Hauenstein²⁰, D. W. Higinbotham⁴, C. E. Hyde²⁰, M. Kaneta²,
C. Keppel⁴, T. Kutz¹⁶, N. Lashley-Colthirst³, S. Li^{21,22}, H. Liu²³, J. Mammei²⁴,
P. Markowitz¹², R. E. McClellan⁴, F. Meddi^{10,25}, D. Meekins⁴, R. Michaels⁴,
M. Mihovilovič^{26,27,28}, A. Moye²⁹, D. Nguyen^{15,30}, M. Nycz¹⁹, V. Owen⁸,
C. Palatchi⁵, S. Park¹⁶, T. Petkovic⁶, S. Premathilake⁵, P. E. Reimer³¹,
J. Reinhold¹², S. Riordan³¹, V. Rodriguez³², C. Samanta³³, S. N. Santiesteban²¹,
B. Sawatzky⁴, S. Širca^{26,27}, K. Slifer²¹, T. Su¹⁹, Y. Tian³⁴, Y. Toyama², K. Uehara²,
G. M. Urciuoli¹⁰, D. Votaw^{13,14}, J. Williamson³⁵, B. Wojtsekhowski⁴, S. A. Wood⁴,
B. Yale²¹, Z. Ye³¹, J. Zhang⁵, and X. Zheng⁵

➢Introduction

- ≻Experiment
- ≻Analysis
- **≻**Summary

4/33

Introduction

- → ${}^{3}_{\Lambda}$ H (I=0) is the only established state in A = 3 hypernuclear system.
- > HypHI Collabolation indicated nnA signal at GSI in 2013.

Theoretical calculation for bound state

Almost all calculations have shown that the existence of the bound state is difficult.

Author	Method	YN interaction	Bound	Regards
Downs [12]	variational method	exponential	×	-
Miyagawa [13]	Fadeev	Nijimegen	×	-
Hiyama [14]	variational method	NSC97f	×	-
Gal [15]	Fadeev	Nijimegen	×	-
Garcilazo [16,17]	Fadeev	CCQM	×	-
Ando [18]	coupled	₩FFT	Δ	Efimov state?
	integral equation			
Belyaev [19]	hyperspherical	Minesota	×	V ↑ 50% bound
	harmonics	Winesota		
Afnan [21]	Fadeev	Yamaguchi	×	Λ n ↑ 25% bound
Filikhin [22]	Fadeev	NSC97f	×	-
Kamada [23] Fadeev		Nijmegen	×	YN↑20% bound

Theoretical calculation for resonant state

- > Many papers have suggested the existence of the resonant states.
- > There are large uncertainties in their binding energies and widths.

Author	Method	YN interaction	Resonance	Regards
Belyaev [19]	hyperspherical harmonics	Minesota	0	-
Afnan [21]	Fadeev	Yamaguchi	×	Λ n † 5% resonance
Filikhin [22]	Fadeev	NSC97f	0	-
Kamada [23]	Fadeev	Nijmegen	0	-
Schäfer [24, 25]	IACCC, CSM	NSC97f, χ EFT	0	-

Iraj R. Afnan and Benjamin F. Gibson. Phys. Rev. C, Vol. 92, p. 054608, 2015

7/33

Collaboration Meeting 2021/12/08

Electro-production of hypernuclei at JLab

8/33

9/33

Experiment

Jefferson Laboratory (Virginia, USA)

- ➤ 12 GeV continuous electron beam (Max)
- High Quality Beam
 - \blacktriangleright $\Delta E/E = 1.0 \times 10^{-4} (FWHM)$
 - > Intensity 100 μ A (22.5 μ A for T₂)
- Data taken in Nov 2018

Collaboration Meeting 2021/12/08

Detectors

- Almost the same configuration
 - Vertical Drift Chamber (VDC)
 - Scintillator (S0 and S2)
- > PID is different
 - Solution Gas Cherenkov (HRS-L, π rejection)
 - > AC1, AC2 (HRS-R, π^+ , p rejection)

Collaboration Meeting 2021/12/08

Detectors

- Almost the same configuration
 - Vertical Drift Chamber (VDC)
 - Scintillator (S0 and S2)
- > PID is different
 - Solution Gas Cherenkov (HRS-L, π rejection)

14/33

15/33

Analysis

The same spectrum has been analyzed in three groups independently.

	This talk	HAMPTON UNIVERSITY THE STANDARD OF EXCELLENCE	
Doctor Candidate	K. N. Suzuki	B. Pandey	K. Itabashi
Focus on	Cross section Upper limit	Peak search	Λn FSI
Acceptance Estimation	Geant4	_	SIMC

17/33

> Vertex optics were calibrated with the carbon foil data.

 $z_{T}(cm)$

> Angle parameters were calibrated with sieve-slit data

Collaboration Meeting 2021/12/08

> Momentum parameters were calibrated with H(e,e'K⁺) Λ/Σ^0

- \succ There are Al cell contamination in the edge.
- > Target region |z| < 0.1 m was selected.

Collaboration Meeting 2021/12/08

K⁺ Selection

K⁺ Selection

 \succ Coincidence time : $t_L^{tar} - t_R^{tar}$

- Aerogel Cherenkov
 - ➤ AC1 (n=1.015)

➤ AC2 (n=1.055)

K⁺ Selection

 \succ Coincidence time : $t_L^{tar} - t_R^{tar}$

Aerogel Cherenkov

► AC1 (n=1.015)

➤ AC2 (n=1.055)

- > Original simulator
- Realistic geometry: target cell, Q1 and Dipole
- ➤ Magnetic field: Dipole → TOSCA Quadrupole → Kato-eq.

 Material included: Target cell, Air, Isolator etc...

Geant4 Simulator

250 **Detectors** data Counts /(1 MeV/ c^2) x, x', y, y' 200 $p(e, e'K^+)\Lambda$ (sim) Λ $p(e, e'K^+)\Sigma^0$ (sim) 150 100 **Matrix** Σ0 50 0 -2020 60 80 100 120 140 -40 0 40 Geant4 $M_x - m_{\Lambda} (MeV/c^2)$ **Estimated Resolution** $\Lambda:1.4\pm0.1 \text{ MeV} \longrightarrow nn\Lambda:1.5\pm0.2 \text{ MeV}$ Target p, x',y'

Efficiency

Efficiency or		Begard	
	correction factor		
$\epsilon_{\mathrm{track}}$	0.981	Tracking efficiency estimated from the data analysis	
		and a simple MC simulation.	
$\epsilon_{ m decay}$	0.15 at $p^{\text{cent.}}$	K^+ survival ratio against its decay estimated by	
		Geant4 MC simulation.	
$\epsilon_{ m T}$	0.986	Survival ratio of the tritium gas against its decay with	
		$^{3}\mathrm{H} \rightarrow^{3}\mathrm{He} + \mathrm{e}^{-} + \bar{\nu}_{\mathrm{e}}.$	
$1/\epsilon_{ m He}$	0.97	Correction factor to correct the ³ He contamination	
		from the tritium decay. A ratio of Q.F. Λ production	
		from ${}^{3}\text{H}$ to that of ${}^{3}\text{He}$ was assumed to be the same	
		as that of the $(e, e'p)$ reaction [40].	
$\epsilon_{ m DAQ}$	0.95	Efficiency of data acquisition system and trigger coun-	
		ters [41].	
$\epsilon_{ ext{ctime}}$	0.96	Efficiency for the real coincidence selection by the	
		coincidence time (Fig. 6).	
$\epsilon_{\rm absorp}$	0.91 at $p^{\text{cent.}}$	Survival ratio of K^+ against its absorption in materi-	
		als due to the K^+N interaction. It was estimated by	
		the Geant4 MC simulation.	
$\epsilon_{ m density}$	0.901	Density-reduction effect of the gas due to the heat by	
·		beam irradiation [20].	
$\epsilon_{ m vertex}$	0.71	z_{diff} and z_{mean} cuts shown in Sec. 3.2.	
$\epsilon_{ ext{PID}}$	0.91	Survival ratio of signals after the particle identification	
		by the gas and aerogel Cherenkov detectors.	
$1/\epsilon_{\pi}$	0.98	Correction factor to correct the π contamination.	

➤ The cross section of ³H(e,e'K⁺)nnA were calculated with the efficiencies.

- A systematic error due to the binning effect is large in the threshold region where the number of events is limited
- Fitting was performed with unbinned-maximum-likelihood

Collaboration Meeting 2021/12/08

> nnA signal with $\Gamma = 0$ MeV was simulated with the Geant4.

> BW function with finite width Γ was convoluted.

- ≻ The upper panels show the result with $(B_{\Lambda}, \Gamma) = (0.25, 0.8)$ and (0.55, 4.7)MeV.
- > No peak structure with a significance exceeding 3σ was found.
- ➤ The bottom show the 90% upper limit. (0.25,0.8) MeV : 21 nb (0.55,4.7) MeV : 31 nb

Collaboration Meeting 2021/12/08

> Two-dimensional scans of B_{Λ} and Γ for upper limit were performed.

Summary

³H(e,e'K)nnΛ reaction was measured with HRS-L and HRS-R at Jefferson Laboratory HallA in 2018.

- The cross section was obtained with efficiencies and correction estimation.
- ➢ No significant peak was observed, and upper limit was estimated.
- ➤ This is expected to provide significant information on the nnA existence and An interaction