BPMs and Harps

(a) BPM design diagram, from JLab instrumentation group

(b) BPM chamber which contains 4 antennas

Figure 3: Harp diagram

BMP calibration

- There are two steps to calibrate the BPMs
- Twiddle: Use one signal wire to output a known signal.
- Calibrate the BPM wires to detect to a relative position.
- This gives a meaning to the BPM readings
- Calibration with HARPS:
- Use harps to determine an exact beam position
- Then compute a transformation matrix.

BPM and HARP

$$
\binom{x}{y}_{L a b}=\binom{C(0,0) C(0,1)}{C(1,0) C(1,1)} \times\binom{ x}{y}_{B P M}+\binom{\operatorname{Offset}(0)}{\operatorname{Offset}(1)}
$$

- BPM is not an absolute measurement of position.
- Calibrate the BPM using the absolute position of the Harps
- Need to convert the harp results to absolute position and transform to correct coordinate system.

First (Harp Scan) Completed (10/12/2016)

First (Harp Scan)

Wire Scan Display and Analysis Tool, Version 5-8				
IHA1H04A \quad	InITIATE SCAN	Previous	Next	Most Recent
Filename:	fusriopdataiharpDatailHA1H04AilHA1H04A.10122016_01:48:16			File Select
Scan Date:	Data and fits results available			
	2016-10-12 01:48	Noise:	318.51	Harp File Header
Empty Field:		Noise RMS:	0.00	
Number of Peaks Found:	3	Number of Peaks Fitted:	3	
\times Beam Position(mm)	-1.220	Y Beam Position(mm)	1.93000000000000016	\diamond Re-try fit
Sigma $\times(\mathrm{mm})$	$0.0541+f-0.0000$	Sigma $Y(\mathrm{~mm})$	$0.0965+1-$	
	u	\checkmark	\times	Plot All
sigma(mm)	$0.0743+1-0.0000$	$0.0820+i-0.0000$	$0.0541+i-0.0000$	- Y axis linear
Beam Position(mm)	-1.567	1.163	-1.220	$\diamond Y$ axis log
Area	$759.12+i-0.00$	$912.87+i-0.00$	$560.56+i-0.00$	
Signal/Noise	$7.4+i-0.0$	$6.7+i-0.0$	$10.1+i-0.0$	Print To:
Chi-square	18.000	18.000	34.000	mcce104d
RMS Width (mm)	$0.047+i-0.008$	$0.065+i-0.009$	$0.048+i-0.008$	Exit

Finding the position

 [a-onl@aonll harp_2016]\$ [a-onl@aonll harp_2016]\$ analyzer

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between \{ \}.
analyzer [0] .x harpAnalyzer_2016.C
Pick a harp to analyze
0) IHA1H04A

1) IHA1H04B

Pick a run to analyze
0) $01: 48: 16$

1) $02: 02: 00$
2) $02: 10: 48$
3) $02: 25: 17$
4) $02: 37: 43$
5) $03: 19: 26$
6) $03: 31: 44$

Info in TCanvas::MakeDefCanvas: created default TCanvas with name cl
Position $X=-4.228 \mathrm{~mm}, \quad$ Sigma $X=0.080 \mathrm{~mm}$ Position $Y=-1.252 \mathrm{~mm}, \quad$ Sigma $Y=0.112 \mathrm{~mm}$
analyzer [1]
analyzer [1]
analyzer [1]
analyzer [1]
analyzer [1]

BPM Calibration

- Take the harp scan and calculate the absolute beam position in the lab frame.
- Example script located at:
- /adaqfs/home/a-onl/rastersize/thir/harp_2016
- harpAnalyzer_2016.C
- Take all harp scans and compile them into a text file
- Example of this file:
- /lustre/expphy/work/halla/triton/Bane/thir
- harp_resultsR.text
- In the same directory:
- Thir_RHRS_bpm.c
- Uses the text file to produce the coefficients:

Calibration results:

I was asked to run the Calibrations and compare with the current database as of (10/25/16): **** Has been updated since!
BPMA constants :
$-c(0,0), \quad c(0,1), \quad c(1,0), \quad c(1,1), \quad$ Off(0), \quad Off(1)

- mine $\quad 0.759072-0.7266080 .7871240 .730018-0.00105990 .00170399$
- current $0.759028-0.7378190 .7871360 .736787-0.00108170 .0017238$
- BPMB constants :
- mine $0.636639-0.7751110 .6732860 .721734-0.0002521-0.00068270$
- current 0.636623-0.680089 0.673286 0.716724-0.0002599-0.00068229

Calibration results:

- Some of my results are diff:
- $C(0,1)$ for BPMb has a large difference.
- After further investigation:
- In the current DB, one of the calibrating harp positions was incorrect.
- This was corrected and the new DB values have been entered.

