K.N. Suzuki, T. Gogami et al., Prog. Theor. Exp. Phys. 2022, 013D01 (2022) DOI: 10.1093/ptep/ptab15

HYP 2022, Czech Republic (2022) http://rafael.ujf.cas.cz/hyp2022/

Cross-section measurement of virtual photoproduction of iso-triplet three-body hypernucleus, Ann

T. Gogami¹, K. N. Suzuki¹, B. Pandey³, K. Itabashi², S. Nagao², K. Okuyama², S. N. Nakamura², L. Tang^{3,4}, D. Abrams⁵, T. Akiyama², D. Androic⁶, K. Aniol⁷, C. Ayerbe Gayoso⁸, J. Bane⁹, S. Barcus⁸, J. Barrow⁹, V. Bellini¹⁰, H. Bhatt¹¹, D. Bhetuwal¹¹, D. Biswas³, A. Camsonne⁴, J. Castellanos¹², J-P. Chen⁴, J. Chen⁸, S. Covrig⁴, D. Chrisman ^{13,14}, R. Cruz-Torres¹⁵, R. Das¹⁶, E. Fuchey ¹⁷, K. Gnanvo⁵, F. Garibaldi^{10,18}, T. Gautam³, J. Gomez⁴, P. Gueye^{3,13,14}, T. J. Hague¹⁹, O. Hansen⁴, W. Henry⁴, F. Hauenstein ²⁰, D. W. Higinbotham⁴, C. E. Hyde ²⁰, M. Kaneta ², C. Keppel ⁴, T. Kutz ¹⁶, N. Lashley-Colthirst ³, S. Li ^{21,22}, H. Liu²³, J. Mammei ²⁴, P. Markowitz ¹², R. E. McClellan⁴, F. Meddi^{10,25}, D. Meekins⁴, R. Michaels⁴, M. Mihovilovic^{26,27,28}, A. Moyer²⁹, D. Nguyen^{15,30}, M. Nycz¹⁹, V. Owen⁸, C. Palatchi⁵, S. Park¹⁶, T. Petkovic⁶, S. Premathilake ⁵, P. E. Reimer³¹, J. Reinhold ¹², S. Riordan³¹, V. Rodriguez³², C. Samanta ³³, S. N. Santiesteban ²¹, B. Sawatzky ⁴, S. Širca ^{26,27}, K. Slifer²¹, T. Su¹⁹, Y. Tian³⁴, Y. Toyama², K. Uehara², G. M. Urciuoli¹⁰, D. Votaw^{13,14}, J. Williamson³⁵, B. Wojtsekhowski⁴, S. A. Wood⁴, B. Yale²¹, Z. Ye³¹, J. Zhang⁵, and X. Zheng⁵

¹Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan, ²Graduate School of Science, Tohoku University, Virginia 23668, USA, ⁴Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA, ⁵Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA, ⁶Department of Physics and Astronomy Department, California State University, Los Angeles, Califonia 90032, USA, ⁸Department of Physics, The College of William and Mary, Virginia 23185, USA, ⁹Department of Physics, USA, ¹⁰INFN, Sezione di Roma, 00185, Rome, Italy, ¹¹Department of Physics, Mississippi State University, Mississippi State, Mississippi 39762, USA, ¹²Department of Physics, Florida International University, Miami, Florida 33199, USA, ¹³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA, ¹⁴National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA, ¹⁵Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, ¹⁶Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA, ¹⁸Istituto Superiore di Sanità, 00161, Rome, Italy, ¹⁹Department of Physics, Kent State University, Norfolk, Virginia 23529, USA, ²¹Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, USA, ²²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, ²⁴Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada, ²⁵Sapienza University of Rome, I-00185, Rome, Italy, ²⁶Faculty of Mathematics and Physics, University of Ljubljana, Slovenia, ²⁸Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, DE-55128 Mainz, Germany, ²⁹Department of Physics, Christopher Newport University, Newport News, Virginia 23606, USA, ³⁰University of Education, Hue University, Hue City, Vietnam, ³¹Physics División de Ciencias y Tecnologia, Universidad Ana G. Méndez, Recinto de Cupey, San Juan 00926, Puerto Rico, ³³Department of Physics & Astronomy, Virginia Military Institute, Lexington, Virginia 24450, USA, ³⁴Department of Physics & Astronomy, University of Glasgow, Gla

1. Introduction

M. Schäfer et al., PRC 105, 015202 (2022)

Virtual

Resonant

The Λ binding energy of hypertriton $(^{3}_{\Lambda}H)$ is small \rightarrow The bound state is difficult to reproduce by theoretical calculations.

But, there found a peak that may be interpreted as the bound state of $nn\Lambda$ by HypHI Collaboration.

We tried investigating the Λ nn state with a way which has a sensitivity to both resonant and bound states at JLab Hall A in 2018.

Photograph of HRS at JLab Hall A.

- \blacklozenge Tritium gas (T₂) gas target was used. $\rightarrow \Lambda$ nn production
- ◆ Missing-mass method \rightarrow Sensitivity to both resonant and bound states.
- ◆ High resolution spectrometers (HRSs) were used for e' (HRS-L) and K^+ (HRS-R) measurements. \rightarrow ~ 3.5 MeV (FWHM) for nn Λ

Table: Two momentum settings used for the experiment.

	Calibration mode (M _{calib} .)	Physics mode (M _{phys.})
Reaction	$p(e, e'K^+)\Lambda/\Sigma^0$	$p(e, e'K^+)\Lambda$ ³ H $(e, e'K^+)nn\Lambda$
$p_{e'}^{\text{cent.}}$ (GeV/c)	2.100	2.218
$p_{K}^{\text{cent.}}$ (GeV/c)	1.82	3
$Q^2 (\text{GeV}/c)^2$	0.479	0.505
θ_{ev} (deg)	11.9	13.2
q (GeV/c)	0.497	0.389
√s (GeV)	2.13	2.07
e	0.769	0.794
€L	0.075	0.092

4.1 Missing mass reconstruction leV

Fitting criteria: **Unbinned maximum likelihood fit** $(-20 < B_{\Lambda} < 20 \text{ MeV})$

A and Σ^0 productions from H gas target. Simulated spectra are superimposed for comparison.

3.2 K⁺ identification

K⁺ needed to be identified from backgrounds in the hadron-arm spectrometer. Protons and pions were the major background sources, and they were rejected by using the analyses of a reaction time (coincidence time) and light yields in the aerogel-Cherenkov counters.

- A and Σ^0 for which the masses are well known. \rightarrow High accuracy: < 0.4 MeV
- ◆ The peak shape of Geant4 MC simulation is consistent with the data \rightarrow The response function (peak shape) is well understood.

Cross section spectrum for the ${}^{3}H(\gamma, K^{+})X$ reaction as a function of $-B_A$.

4.2 Fitting result

Belyaev (2008): YN int. = Minesota

Probability density function (PDF):

1. Response function (RF) \succ Geant4 simulation

2. Decay width Breit Wigner

<u>3. QF shape $(-B_{\Lambda} > 0)$ </u> ➢ Unknown \rightarrow Linear function \otimes RF

4. Combinatorial background \rightarrow Data \rightarrow the 4th order polynomial

 $x_{U.L.} = x_{U.L.}^{\text{stat.}} + sys. err.$

Theoretical predictions (Γ , B_{Λ}) shown here: • H. Kamada et al., EPJ Web Conf. 113, 07004 (2016) • V. B. Belyaev et al., Nucl. Phys. A 803, 210–226 (2008). • M. Schäfer et al., Phys. Rev. C 103, 025204 (2021).

5. Summary

- **\square** The Ann state was investigated by the ³H(e,e'K⁺)X reaction at JLab Hall A to pin down the existence of its bound state.
- \square Energy calibration was performed by using Λ and Σ^0 productions from H₂-gas target.
- **D** Spectrum of the reaction-production cross-section was successfully obtained
 - ✓ Unbinned MLF fitting → Upper limit for the nn Λ production was obtained.
 - ✓ Some events remained over the backgrounds, although its significance is not so large. \rightarrow Further study is necessary

Other work:

- Count-base analysis: B. Pandey, L. Tang et al., Phys. Rev. C 105, L051001 (2022).
- \blacktriangleright Final state interaction analysis to study the An interaction: in progress

- \Box Information on the reaction-cross section (upper limit) for the electro-production of Λ nn was successfully obtained.
- □ There are remained events after the expected backgrounds were subtracted, although they are not significant.
- Mon-II: Prof. L. Tang, "Newly completed JLab experiment (E12-17-003): Determine the unknown Λn interaction by investigating the possible Λnn resonance"

- Wed-IVb: B. Pandey, "Analysis of E12-17-003 Experiment"
 - Thu-IIIa: Dr. K. Itabashi, "Study of Λ -n FSI with Lambda quasi-free productions on the ³H(e,e'K⁺)X reaction at JLab"
- Thu-IIIa: K. Okuyama, "Study of the Λ/Σ^0 electroproduction in the low-Q² region at JLab"

JLab E12-19-002 Experiment HYP 2022, Czech Republic (2022) 京都大学 http://rafael.ujf.cas.cz/hyp2022/ High accuracy spectroscopy of KYOTO UNIVERSI 3- and 4-body Lambda hypernuclei at Jefferson Lab

T. Gogami¹, P. Achenbach⁹, T. Akiyama², D. Androic¹¹, A. Asaturyan¹⁰, E. Brash¹⁴, M. H. Bukhari¹⁸, A. Camsonne⁷, S. Covrig Dusa⁷, K. Ebata¹, M. A. Elaasar¹³, Y. Fujii⁸, T. Fujiwara², M. Furic¹¹, F. Garibaldi^{3,4}, P. Gueye²⁰, D. W. Higinbotham⁷, T. Ishige², K. Itabashi²¹, M. Kaneta², R. Kino², N. Lashley³, P. Markowitz⁵, D. Meekins⁷, M. Mizuno², H. G. Mkrtchyan¹⁰, A. H. Mkrtchyan¹⁰, S. Nagao², S. N. Nakamura²¹, Y. R. Nakamura², G. Niculescu¹⁶, I. Niculescu¹⁶, K. Okuyama², B. Pandey³, J. Pochodzalla⁹, J. Reinhold⁵, V. M. Rodriguez¹², C. Samanta¹⁷, B. Sawatzky⁷, M. H. Shabestari¹⁹, A. Shahinyan¹⁰, S.Sirca¹⁵, K. N. Suzuki¹, K. Tachigana², L. Tang^{6,7}, Y. Toyama²², K. Tsutsumi¹, K. Uehara², E. Umezaki¹, G. M. Urciuoli³, D. Watanabe², and S. A. Wood⁷

¹Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan, ²Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan, ³INFN, Sezione di Roma, 00185 Rome, Italy, ⁴Istituto Superiore di Sanit`a, 00161 Rome, Italy, ⁵Department of Physics, Florida International University, Mami, FL 33199, USA, ⁶Department of Physics, Hampton, VA 23668, USA, ⁷Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606, USA, ⁸ Physics Section, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan, ⁹ Institute for Nuclear Physics, Johannes Gutenberg-University, D-55099 Mainz, Germany, ¹⁰ A.I. Alikhanyan National Science Laboratory, Yerevan 0036, Armenia, ¹¹ Department of Physics, University of Zagreb, HR-10000 Zagreb, Croatia, ¹² Division de Ciencias y Tecnolog[']1a, Universidad Ana G. Mendez, Recinto de Cupey, San Juan 00926, Puerto Rico, ¹³ Department of Physics, Southern University at New Orleans, New Orleans, LA 70126, USA, ¹⁴ Department of Physics, Computer Science & Engineering, Christopher News, VA, USA 23606, ¹⁵ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia, ¹⁶ Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807, USA, ¹⁷ Department of Physics & Astronomy, Virginia 24450, USA, ¹⁸ Jazan University, Jazan 45142, Saudi Arabia, ¹⁹ Department of Physics, University of West Florida, FL 32514, USA, ²⁰ Facility for Rare Isotope Beams, Michigan State University, MI 48824, USA, ²¹ Department of Physics, Graduate School of Science, the University of Tokyo, Japan, ²² Center for Muon Science and Technology, Chubu University, Kasugai-shi, Aichi 487-8501, Japan

□ The contradiction between small binding energy B_{Λ} and the short lifetime is called "Hypertriton Puzzle"

□ Accurate data for both the binding energy and lifetime are being tried to be obtained in various experimental facilities

1.2 Charge Symmetry Breaking (CSB) in A = 4 system

Fig. Experimental setup for the new experiment at JLab Hall C

Great energy resolution of $0.5 \sim 1$ MeV FWHM thanks to HES and HKS

• Gas $({}^{1}H_{2}, {}^{3,4}He)$ and solid targets $(CH_2, {}^{6}Li, {}^{11}B, {}^{12}C, {}^{40,48}Ca, {}^{208}Pb)$ will be used. • For the gas target analysis, most of background events from Al cell would be omitted by a vertex cut. Beam current of about 20 µA is assumed.

^{*3)} T. O. Yamamoto *et al.* (J-PARC E13 Collaboration), Phys. Rev. Lett. 115, 222501 (2015)

^{*4)} A. Esser *et al.* (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015).

2. Goal of the experiment

2.1 $B_{\Lambda}(^{3}_{\Lambda}H; 1/2^{+} \text{ or } 3/2^{+})$ measurement

 $|\Delta B_{\Lambda}^{\text{total}}| < 100 \text{ keV}$

- The ground state $1/2^+$ measurement $\rightarrow \Lambda N$ spin singlet interaction / Hypertriton puzzle
- The first excited sate $3/2^+$ may be able to be determined if it exists (the cross section could be much larger) $\rightarrow \Lambda N$ spin triplet

Counts 00

40

30 =

20

-6

4. Expected result

Hypernucleus	Target [/(mg/cm ²)]	Beam time (/days)	Cross section [/(nb/sr)]	Gas density reduction	Yield
$^{3}_{\Lambda}$ H	³ He (190)	20	5	0.5	230
$^4_{\Lambda}{ m H}$	⁴ He (262)	4	20	0.5	190

MeV FWHM

□ HES (vertical) + HKS at JLab Hall C ✓ Missing mass spectroscopy ✓ $0.5 \sim 1$ MeV FWHM resolution \checkmark < 100 keV accuracy \square Binding energies of $^{3}_{\Lambda}$ H (1/2⁺ or 3/2⁺) and $^{4}_{\Lambda}$ H (1⁺) ✓ Hypertriton puzzle ✓ Charge Symmetry breaking

We aim	to perform	the experimen	t in 2023

• Poster: T. Akiyama, "Missing mass spectroscopy of potassium hypernuclei at Jefferson Lab" • Thu-IIb: F. Garibaldi, "Studying Λ interactions in nuclear matter with the ²⁰⁸Pb(e, e'K⁺)²⁰⁸Tl reaction"