Measurement of light hypernuclear B_{Λ} and τ at MAMI and ELPH

Tohoku University Sho Nagao

2022/03/22

Contents

B_{Λ} measurement of ${}^{3}_{\Lambda}H$ at MAMI

Lifetime measurement of ³_AH at ELPH Elementary Cross Section measurement

Hypertriton Lifetime and Binding Energy

d- Λ bound system Λ loosely bound (0.13 \pm 0.05 MeV)

 \rightarrow Radius ~10 fm

 $d-\Lambda$ weak interaction

 $\tau \sim \tau_{\Lambda}$ (= 263 ps) due to d- Λ weak interaction

M.Julic et al. NPB52(1973)1.

Emulsion Average: small binding energy 0.13 ± 0.05 MeV. Heavy Ion : deeper binding energy $0.41 \pm 0.12 \pm 0.11$ MeV.

STAR Collaboration NP16(2020)409.

Hypertriton has a short lifetime? deeper bound state ? "Hypertriton Puzzle"

Theoretical Predictions

Three-body Faddeev approach:256 psH.Kamada et al., PRC57(1998)1595.Faddeev + attractive pion FSI:213 psA.Gal et al., PLB791(2019)48.

Strong correlation with lifetime $-B_{\Lambda}$ and width $-B_{\Lambda}$. Measurement of B_{Λ} , lifetime, and decay branch is important.

Towards resolving the hypertriton puzzle

Lifetime

- > Data with a different approach.
- > $^{3}\text{He}(\gamma, K^{+})^{3}_{\Lambda}\text{H}$ reaction at ELPH.
- > δτ ~ 10 ps.
- Measurement of decay branch.

Λ Binding Energy

- More precise and accurate measurement.
- Decay pion spectroscopy at MAMI.
- > $\delta B_{\Lambda} \sim 10$ keV (including syst.).

MAMI (B_{Λ} measurement)

Decay pion spectroscopy

High resolution spectroscopy of low momentum charged pion.Excellent resolution and precision thanks to high quality beam and less material.Small systematic uncertainty thanks to well studied spectrometer.

New Determination of ${}^{4}_{\Lambda}$ H binding energy

New target for the next experiment

Background suppression and higher yield is very important.

Last : ⁹Be 47mg/cm² 40~60 μA Next : Li 2700 mg/cm² 2~10 μA

Beamtime assignment in July~

NKS2 (Lifetime measurement)

Difficulties of hypertriton production

(π^+, K^+) or (K^-, π^-) reaction

 $n \rightarrow \Lambda \Rightarrow T_2 \rightarrow {}^3_{\Lambda}H$ Studied by (π^+, K^0) or (K^-, π^0) reaction Measurement of non-charge particle is difficult. Mass spectroscopy would be difficult. (e,e'K⁺) reaction

 $p \rightarrow \Lambda \Rightarrow {}^{3}\text{He} \rightarrow {}^{3}_{\Lambda}\text{H}$

Electron beam intensity is too high. Measurement of decay products is difficult. \Rightarrow Experiment with the (γ , K⁺) reaction

Experimental Setup

2022/03/11 ELPHシンポジウム2022

C.S. measurement of the $p(\gamma, K^+)\Lambda$ at forward angles

$$\frac{\mathrm{d}\sigma_{v}}{\mathrm{d}\Omega_{K}^{*}} = \frac{\mathrm{d}\sigma_{T}}{\mathrm{d}\Omega_{K}^{*}} + \epsilon \frac{\mathrm{d}\sigma_{L}}{\mathrm{d}\Omega_{K}^{*}} + \sqrt{2\epsilon(1+\epsilon)} \frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}\Omega_{K}^{*}} \cos \phi_{K}^{*} + \epsilon \frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}\Omega_{K}^{*}} \cos 2\phi_{K}^{*}$$

iso-bar model (K-MAID, SLA etc.) [PRC61(2000)012201., PRC58(1998)75.] Regge + Resonance model [Phys. Rev. C 73 (2006) 045207]

Angular dependence on K+L cross section

There are not enough data at the forward angles. New NKS2 experiment has an acceptance at $\theta_{\gamma K} = 5 - 20^{\circ}$, W < 1.8 GeV Experiment is already approved, it will run in June 2022.

Summary

Precise measurement of light hypernuclei is important resolving the effective AN interaction.

Inconsistency of hypertriton binding energy and lifetime

Experimental approach

More accurate B_Λ measurement with decay pion spectroscopy at Mainz (July 2022~) High intensity electron beam and new Li target will be used.
δB_Λ ~ 10 keV will be expected.
More precise lifetime measurement with (γ,K⁺) reaction at ELPH (2022~) Real photon beam and He target will be used.
δτ ~ 10 ps will be expected.
p(γ,K+)Λ experiment will be performed in June 2022.