Tritium Experiments at Jlab.

Tritium Target

- Tritium Target specs
- 1090 Ci of T2 (0.1 g)
- ~200 psi at 295 K
- 25 cm long
- ID of 12.7 mm
- Volume $=34 \mathrm{cc}$
- Aluminum CF seals
- Cell is "sealed"
- No recirculation

- JLAB does not "handle" the T2 gas

Hall A HRSs

The Experiments!

Elastic form Factors (E12-14-009)

Currently

$<\mathrm{r}^{2}{ }_{\text {rms }}>_{3 \mathrm{He}}-<\mathrm{r}^{2}{ }_{\mathrm{rms}}>_{3 \mathrm{H}}=(0.20 \pm 0.10) \mathrm{fm}$

Expected Results

Make a 2\% measurement of the form factor ratio:
$<\mathrm{r}^{2}{ }_{\mathrm{rms}}>_{3 \mathrm{He}}-\left\langle\mathrm{r}^{2}{ }_{\mathrm{rms}}>_{3 \mathrm{H}}=(0.20 \pm 0.03) \mathrm{fm}\right.$
Only 1.5 days of beam time requested for experiment.

This experiment has been moved to the bench, due to the special Beam requirements .

Hauenstein, 2017

Short Range Correlations!

Momentum Distribution
N. Fomin et al. ,Phys. Rev. Lett. 108,(2012)

Isospin v. SRC (E12-11-112)

Isospin Independent
$\frac{\sigma_{3 \mathrm{He}} / 3}{\sigma_{3 H} / 3}=\frac{\left(2 \sigma_{p}+1 \sigma_{n}\right) / 3}{\left(1 \sigma_{p}+2 \sigma_{n}\right) / 3} \xrightarrow{\sigma_{p} \approx 3 \sigma_{n}} 1.4$
Full n-p dominance
$\frac{\sigma_{3 H e} / 3}{\sigma_{3 H / 3}}=\frac{(2 p n+1 n n) / 3}{(2 p n+, 1 p p) / 3}=1.0$

- Isospin dependence of 2N SRCs
- Better precision: extract ratio $R(T=1 / T=0)$
- Much smaller FSI (inclusive)

Isospin v. SRC (E12-11-112)

Right arm parasitic

Main production-> 17.5 days at 4.4 GeV

Checkout and QE comparison 1.5 days at 2.2 GeV

Momentum Distributions (E12-14-011)

- Complete the first QE reaction ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$
- Using mirror nuclei, extract momentum distribution ratios
- Comparison of reduced cross section measurements to help with approximating FSI
- Using (e,e'p) Reaction

Momentum Distributions (E12-14-011)

$\left\langle p_{m}\right\rangle(\mathrm{MeV} / \mathrm{c})$	x	$E_{\mathrm{e}}(\mathrm{GeV})$	θ_{e}	p_{p}	θ_{p}	Time $^{*}{ }^{3} \mathrm{H}+{ }^{3} \mathrm{He}(\mathrm{d})$
100	1.15	3.47	20.9°	1.61	48.7°	1
300	1.41	3.64	20.4°	1.35	58.6°	10

Expected results:

Kaon (e,e'k) (E12-17-003)

- $\wedge n n$ resonance through electropoduction of K^{+}
- ${ }^{3} \mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right)(\wedge \mathrm{nn})$
- Add an Aerogel Cherenkov counter
- Electron beam energy 4.524 GeV
- e' LHRS 2.725 GeV/c ($\pm 4.5 \%)$
- e' LHRS angle 12.5° (6 msr)
- K+ RHRS $1.5 \mathrm{GeV} / \mathrm{c}$ ($\pm 4.5 \%$)
- K+ RHRS angle 17.5° (6 msr)
- Requested 10 PAC days!
- Measure the binding energy (the real part of the energy eigenvalue) and the natural width (the imaginary part of the energy eigenvalue)
- Expected Results: Simulated spectroscopy that contains the $\wedge \mathrm{n}$ resonance and the \wedge quasi-free Production.

MARATHON (E12-10-103)

$$
\sigma \propto F_{2}\left(x, Q^{2}\right) \xrightarrow{\text { Parton Model }} F_{2}(x)=x \sum^{k} e_{i}^{2}\left(q_{i}(x)+\bar{q}_{i}(x)\right) \quad \frac{F_{2}^{n}}{F_{2}^{p}}=\frac{1+4(d / u)}{4+(d / u)}
$$

Arrington et al. PRL 108, 252001 (2012)

MARATHON (E12-10-103)

Use Tritium and ${ }^{3} \mathrm{He}$, two mirror nuclei:

- EMC effect for $A=3$
- Isospin dependence
- F2n/F2P ratio
- d/u quark distribution ratio.

Run plan

Begin running on December $1^{\text {st }}$.

- Complete commissioning.
- Begin Isospin dependence of SRCs
- Break for Winter Holiday
- Run MARATHON(DIS) for ~ 20 PAC days
- Break for the Summer
- Finish Isospin dependence of SRCs
- Run (e,e'p) SRCs for about ~12 PAC days
- Run (e,e'K+) for about ~12 PAC days

Summary

- Jlab will play host to a group of highly sought out experiments using a Tritium target.
- Using the newly upgraded electron beam will allow for complex study of many regions.
- DIS with MARATHON
- Isospin dependence of the EMC effect, d/u quark ration, and $F_{2^{n}} / F_{2^{p}}$ ratio
- Inelastic scattering -^nn resonance ..Kaons
- QE looking at SRCs
- Isospin dependence and nuclear momentum distributions
- Elastic scattering - Elastic Form Factors and the charge radius.

